版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示是小孔成像原理的示意圖,根據(jù)圖中所標注的尺寸,求出這支蠟燭在暗盒中所成像的長()A. B. C. D.2.不等式組的解集在數(shù)軸上表示為()A. B. C. D.3.為了解中學300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.964.如圖,,,則的大小是A. B. C. D.5.如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標為6,曲線BC是雙曲線y=的一部分,點C的橫坐標為6,由點C開始不斷重復“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是()A.10 B. C. D.156.3月22日,美國宣布將對約600億美元進口自中國的商品加征關稅,中國商務部隨即公布擬對約30億美元自美進口商品加征關稅,并表示,中國不希望打貿易戰(zhàn),但絕不懼怕貿易戰(zhàn),有信心,有能力應對任何挑戰(zhàn).將數(shù)據(jù)30億用科學記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10107.如圖,直線a∥b,點A在直線b上,∠BAC=100°,∠BAC的兩邊與直線a分別交于B、C兩點,若∠2=32°,則∠1的大小為()A.32° B.42° C.46° D.48°8.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣9.天氣越來越熱,為防止流行病傳播,學校決定用420元購買某種牌子的消毒液,經(jīng)過還價,每瓶便宜0.5元,結果比用原價購買多買了20瓶,求原價每瓶多少元?設原價每瓶x元,則可列出方程為()A.-=20 B.-=20C.-=20 D.10.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差11.小剛從家去學校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時后到達學校,小剛從家到學校行駛路程s(單位:m)與時間r(單位:min)之間函數(shù)關系的大致圖象是()A. B. C. D.12.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,A、B是反比例函數(shù)y=(k>0)圖象上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.14.如圖,點A,B是反比例函數(shù)y=(x>0)圖象上的兩點,過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D,連接OA,BC,已知點C(2,0),BD=2,S△BCD=3,則S△AOC=__.15.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的.16.若式子有意義,則實數(shù)x的取值范圍是_______.17.如圖,半徑為5的半圓的初始狀態(tài)是直徑平行于桌面上的直線b,然后把半圓沿直線b進行無滑動滾動,使半圓的直徑與直線b重合為止,則圓心O運動路徑的長度等于_____.18.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)十八大報告首次提出建設生態(tài)文明,建設美麗中國.十九大報告再次明確,到2035年美麗中國目標基本實現(xiàn).森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數(shù)量和質量對生態(tài)文明建設非常關鍵.截止到2013年,我國已經(jīng)進行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:表1全國森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)122001150125001340015894.0917490.9219545.2220768.73森林覆蓋率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)33.7437.8852.0558.81森林覆蓋率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上數(shù)據(jù)來源于中國林業(yè)網(wǎng))請根據(jù)以上信息解答下列問題:(1)從第次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;(2)補全以下北京森林覆蓋率折線統(tǒng)計圖,并在圖中標明相應數(shù)據(jù);(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時,如果全國森林覆蓋率達到27.15%,那么全國森林面積可以達到萬公頃(用含a和b的式子表示).20.(6分)在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣4,0),B(1,0)兩點,與y軸交于點C.(1)求這個二次函數(shù)的解析式;(2)連接AC、BC,判斷△ABC的形狀,并證明;(3)若點P為二次函數(shù)對稱軸上點,求出使△PBC周長最小時,點P的坐標.21.(6分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標;若△ABC的面積為4,求的解析式.22.(8分)已知,數(shù)軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數(shù)為,點B表示的數(shù)為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應的數(shù),并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.23.(8分)(8分)如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.24.(10分)如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數(shù).25.(10分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.26.(12分)已知,拋物線(為常數(shù)).(1)拋物線的頂點坐標為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點且與圖象交點的縱坐標為3,請在圖1中畫出拋物線的簡圖,并求的函數(shù)表達式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標軸,,若拋物線經(jīng)過兩點,且矩形在其對稱軸的左側,則對角線的最小值是.27.(12分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調查了若干名中學生,根據(jù)調查結果制作統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:(1)本次接受隨機抽樣調查的中學生人數(shù)為_______,圖①中m的值是_____;(2)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計數(shù)據(jù),估計該地區(qū)250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
過O作直線OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根據(jù)相似三角形對應邊的比等于對應高的比列方程求出CD的值即可.【詳解】過O作直線OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分別是△OAB和△OCD的高,∴,即,解得:CD=1.故選D.【點睛】本題考查相似三角形的應用,解題的關鍵在于理解小孔成像原理給我們帶來的已知條件,熟記相似三角形對應邊的比等于對應高的比是解題關鍵.2、A【解析】
分別求得不等式組中兩個不等式的解集,再確定不等式組的解集,表示在數(shù)軸上即可.【詳解】解不等式①得,x>1;解不等式②得,x>2;∴不等式組的解集為:x≥2,在數(shù)軸上表示為:故選A.【點睛】本題考查了一元一次不等式組的解法,正確求得不等式組中每個不等式的解集是解決問題的關鍵.3、C【解析】
解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.4、D【解析】
依據(jù),即可得到,再根據(jù),即可得到.【詳解】解:如圖,,,又,,故選:D.【點睛】本題主要考查了平行線的性質,兩直線平行,同位角相等.5、C【解析】
A,C之間的距離為6,點Q與點P的水平距離為3,進而得到A,B之間的水平距離為1,且k=6,根據(jù)四邊形PDEQ的面積為,即可得到四邊形PDEQ的面積.【詳解】A,C之間的距離為6,2017÷6=336…1,故點P離x軸的距離與點B離x軸的距離相同,在y=4x+2中,當y=6時,x=1,即點P離x軸的距離為6,∴m=6,2020﹣2017=3,故點Q與點P的水平距離為3,∵解得k=6,雙曲線1+3=4,即點Q離x軸的距離為,∴∵四邊形PDEQ的面積是.故選:C.【點睛】考查了反比例函數(shù)的圖象與性質,平行四邊形的面積,綜合性比較強,難度較大.6、A【解析】
科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】將數(shù)據(jù)30億用科學記數(shù)法表示為,故選A.【點睛】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.7、D【解析】
根據(jù)平行線的性質與對頂角的性質求解即可.【詳解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案選D.【點睛】本題考查了平行線的性質,解題的關鍵是熟練的掌握平行線的性質與對頂角的性質.8、C【解析】試題分析:找出一元二次方程的系數(shù)a,b及c的值,利用根與系數(shù)的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數(shù)的關系9、C【解析】
關鍵描述語是:“結果比用原價多買了1瓶”;等量關系為:原價買的瓶數(shù)-實際價格買的瓶數(shù)=1.【詳解】原價買可買瓶,經(jīng)過還價,可買瓶.方程可表示為:﹣=1.故選C.【點睛】考查了由實際問題抽象出分式方程.列方程解應用題的關鍵步驟在于找相等關系.本題要注意討價前后商品的單價的變化.10、D【解析】
解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.11、B【解析】【分析】根據(jù)小剛行駛的路程與時間的關系,確定出圖象即可.【詳解】小剛從家到學校,先勻速步行到車站,因此S隨時間t的增長而增長,等了幾分鐘后坐上了公交車,因此時間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學校,因此S又隨時間t的增長而增長,故選B.【點睛】本題考查了函數(shù)的圖象,認真分析,理解題意,確定出函數(shù)圖象是解題的關鍵.12、D【解析】
解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.14、1.【解析】
由三角形BCD為直角三角形,根據(jù)已知面積與BD的長求出CD的長,由OC+CD求出OD的長,確定出B的坐標,代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關鍵.15、(1)4;(2)見解析;【解析】
解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求。【詳解】(1)OM==4;故答案為4.(2)以點O為原點建立直角坐標系,則A(1,0),B(4,0),設P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據(jù)勾股定理即可得到結論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結果.16、x≤2且x≠1【解析】
根據(jù)被開方數(shù)大于等于1,分母不等于1列式計算即可得解.【詳解】解:由題意得,且x≠1,解得且x≠1.故答案為且x≠1.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負數(shù).17、5π【解析】
根據(jù)題意得出球在無滑動旋轉中通過的路程為圓弧,根據(jù)弧長公式求出弧長即可.【詳解】解:由圖形可知,圓心先向前走OO1的長度,從O到O1的運動軌跡是一條直線,長度為圓的周長,然后沿著弧O1O2旋轉圓的周長,則圓心O運動路徑的長度為:×2π×5=5π,故答案為5π.【點睛】本題考查的是弧長的計算和旋轉的知識,解題關鍵是確定半圓作無滑動翻轉所經(jīng)過的路線并求出長度.18、.【解析】
由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據(jù)點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設A(x,),從而表示出梯形BOCA的面積關于k的等式,求解即可.【詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設A點坐標為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【點睛】反比例函數(shù)綜合題,曲線上點的坐標與方程的關系,相似三角形的判定和性質,同底三角形面積的計算,梯形中位線的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)四;(2)見解析;(3).【解析】
(1)比較兩個折線統(tǒng)計圖,找出滿足題意的調查次數(shù)即可;(2)描出第四次與第五次北京森林覆蓋率,補全折線統(tǒng)計圖即可;(3)根據(jù)第八次全面森林面積除以森林覆蓋率求出全國總面積,除以第九次的森林覆蓋率,即可得到結果.【詳解】解:(1)觀察兩折線統(tǒng)計圖比較得:從第四次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;故答案為四;(2)補全折線統(tǒng)計圖,如圖所示:(3)根據(jù)題意得:×27.15%=,則全國森林面積可以達到萬公頃,故答案為.【點睛】此題考查了折線統(tǒng)計圖,弄清題中的數(shù)據(jù)是解本題的關鍵.20、(1)拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形,理由見解析;(3)當P點坐標為(﹣,)時,△PBC周長最小【解析】
(1)設交點式y(tǒng)=a(x+4)(x-1),展開得到-4a=2,然后求出a即可得到拋物線解析式;
(2)先利用兩點間的距離公式計算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判斷△ABC為直角三角形;
(3)拋物線的對稱軸為直線x=-,連接AC交直線x=-于P點,如圖,利用兩點之間線段最短得到PB+PC的值最小,則△PBC周長最小,接著利用待定系數(shù)法求出直線AC的解析式為y=x+2,然后進行自變量為-所對應的函數(shù)值即可得到P點坐標.【詳解】(1)拋物線的解析式為y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴拋物線解析式為y=﹣x2﹣x+2;(2)△ABC為直角三角形.理由如下:當x=0時,y=﹣x2﹣x+2=2,則C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC為直角三角形,∠ACB=90°;(3)拋物線的對稱軸為直線x=﹣,連接AC交直線x=﹣于P點,如圖,∵PA=PB,∴PB+PC=PA+PC=AC,∴此時PB+PC的值最小,△PBC周長最小,設直線AC的解析式為y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直線AC的解析式為y=x+2,當x=﹣時,y=x+2=,則P(﹣,)∴當P點坐標為(﹣,)時,△PBC周長最小.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化解.關于x的一元二次方程即可求得交點橫坐標.也考查了待定系數(shù)法求二次函數(shù)解析式和最短路徑問題.21、(1)(0,3);(2).【解析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出點B的坐標;(2)由=BC?OA,得到BC=4,進而得到C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入即可得到的解析式.【詳解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴點B的坐標是(0,3).(2)∵=BC?OA,∴BC×2=4,∴BC=4,∴C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入得:,∴,∴的解析式為是.考點:一次函數(shù)的性質.22、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解析】
(1)根據(jù)數(shù)軸即可得到a,b數(shù)值,即可得出結果.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2,即可求解.(1)點A不動,點B向右移動15.1個單位長,所以a=10,b=17.1,再b-a即可求解.【詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點A不動,點B向右移動15.1個單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【點睛】本題主要考查了數(shù)軸,關鍵在于數(shù)形結合思想.23、(1),;(1)2.【解析】試題分析:(1)先求出A、B、C點坐標,用待定系數(shù)法求出直線AB和反比例的函數(shù)解析式;(1)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點D的坐標,從而根據(jù)三角形面積公式求解.試題解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x軸于點E,tan∠ABO==,∴OA=1,CE=3,∴點A的坐標為(0,1)、點B的坐標為C(4,0)、點C的坐標為(﹣1,3),設直線AB的解析式為,則,解得:,故直線AB的解析式為,設反比例函數(shù)的解析式為(),將點C的坐標代入,得3=,∴m=﹣3.∴該反比例函數(shù)的解析式為;(1)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得,可得交點D的坐標為(3,﹣1),則△BOD的面積=4×1÷1=1,△BOD的面積=4×3÷1=3,故△OCD的面積為1+3=2.考點:反比例函數(shù)與一次函數(shù)的交點問題.24、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.25、證明見解析【解析】試題分析:通過全等三角形△ADE≌△CBF的對應角相等證得∠AED=∠CFB,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貨物受理環(huán)節(jié)驗視登記制度
- 課程審議制度
- 礦山鴻蒙與數(shù)智技術在智能化礦山建設中的應用與實踐
- 2025年-紹興教師編招聘筆試及答案
- 2025年合肥省人事考試及答案
- 2025年鶴崗下半年事業(yè)編考試及答案
- 2025年湖南國開行筆試及答案
- 2025年酒店公開招聘筆試題庫及答案
- 2025年牡丹江人事考試及答案
- 落實全面合理檢查的質量管理與改進制度
- 醫(yī)保違規(guī)行為分類培訓課件
- 依法行醫(yī)教學課件
- 講課學生數(shù)學學習成就
- 醫(yī)療器械法規(guī)對互聯(lián)網(wǎng)銷售的限制
- 西葫蘆栽培技術要點
- 系桿拱橋系桿預應力施工控制要點
- 高中學生學籍表模板(范本)
- 三亞市海棠灣椰子洲島土地價格咨詢報告樣本及三洲工程造價咨詢有限公司管理制度
- 常見磁性礦物的比磁化系數(shù)一覽表
- 高中心理健康教育-給自己點個贊教學課件設計
- 薪酬管理論文參考文獻,參考文獻
評論
0/150
提交評論