版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
小學(xué)奧數(shù)知識點(diǎn)大全1.和差倍問題
和差問題和倍問題差倍問題
已知條件幾個數(shù)的和與差幾個數(shù)的和與倍數(shù)幾個數(shù)的差與倍數(shù)
公式適用范圍已知兩個數(shù)的和,差,倍數(shù)關(guān)系
公式①(和-差)÷2=較小數(shù)
較小數(shù)+差=較大數(shù)學(xué)校奧數(shù)很簡潔,就這30個學(xué)問點(diǎn)
和-較小數(shù)=較大數(shù)
②(和+差)÷2=較大數(shù)
較大數(shù)-差=較小數(shù)
和-較大數(shù)=較小數(shù)
和÷(倍數(shù)+1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
和-小數(shù)=大數(shù)
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
小數(shù)+差=大數(shù)
關(guān)鍵問題求出同一條件下的
和與差和與倍數(shù)差與倍數(shù)
2.年齡問題的三個基本特征:
①兩個人的年齡差是不變的;
②兩個人的年齡是同時增加或者同時削減的;
③兩個人的年齡的倍數(shù)是發(fā)生變化的;
3.歸一問題的基本特點(diǎn):問題中有一個不變的量,一般是那個“單一量”,題目一般用“照這樣的速度”……等詞語來表示。
關(guān)鍵問題:依據(jù)題目中的條件確定并求出單一量;
4.植樹問題
基本類型在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的曲線上植樹,只有一端植樹封閉曲線上植樹
基本公式棵數(shù)=段數(shù)+1
棵距×段數(shù)=總長棵數(shù)=段數(shù)-1
棵距×段數(shù)=總長棵數(shù)=段數(shù)
棵距×段數(shù)=總長
關(guān)鍵問題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系
5.雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯的那部分置換出來;
基本思路:
①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個差是多少;
③每個事物造成的差是固定的,從而找出消失這個差的緣由;
④再依據(jù)這兩個差作適當(dāng)?shù)恼{(diào)整,消去消失的差。
基本公式:
①把全部雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))
②把全部兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問題:找出總量的差與單位量的差。
6.盈虧問題
基本概念:肯定量的對象,根據(jù)某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:根據(jù)另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對象分組的組數(shù)或?qū)ο蟮目偭?
基本思路:先將兩種安排方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,依據(jù)這個關(guān)系求出參與安排的總份數(shù),然后依據(jù)題意求出對象的總量.
基本題型:
①一次有余數(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差
②當(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差
③當(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn):對象總量和總的組數(shù)是不變的。
關(guān)鍵問題:確定對象總量和總的組數(shù)。
7.牛吃草問題
基本思路:假設(shè)每頭牛吃草的速度為“1”份,依據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的緣由,即可確定草的生長速度和總草量。
基本特點(diǎn):原草量和新草生長速度是不變的;
關(guān)鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間×長時間牛頭數(shù)-較短時間×短時間牛頭數(shù))÷(長時間-短時間);
總草量=較長時間×長時間牛頭數(shù)-較長時間×生長量;
8.周期循環(huán)與數(shù)表規(guī)律
周期現(xiàn)象:事物在運(yùn)動變化的過程中,某些特征有規(guī)律循環(huán)消失。
周期:我們把連續(xù)兩次消失所經(jīng)過的時間叫周期。
關(guān)鍵問題:確定循環(huán)周期。
閏年:一年有366天;
①年份能被4整除;②假如年份能被100整除,則年份必需能被400整除;
平年:一年有365天。
①年份不能被4整除;②假如年份能被100整除,但不能被400整除;
9.平均數(shù)
基本公式:①平均數(shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
②平均數(shù)=基準(zhǔn)數(shù)+每一個數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計算.
②基準(zhǔn)數(shù)法:依據(jù)給出的數(shù)之間的關(guān)系,確定一個基準(zhǔn)數(shù);一般選與全部數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求全部給出數(shù)與基準(zhǔn)數(shù)的差;再求出全部差的和;再求出這些差的平均數(shù);最終求這個差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),詳細(xì)關(guān)系見基本公式②。
10.抽屜原理
抽屜原則一:假如把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數(shù)的和,那么就有以下四種狀況:
①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1
觀看上面四種放物體的方式,我們會發(fā)覺一個共同特點(diǎn):總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:假如把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:
①k=[n/m]+1個物體:當(dāng)n不能被m整除時。
②k=n/m個物體:當(dāng)n能被m整除時。
理解學(xué)問點(diǎn):[X]表示不超過X的最大整數(shù)。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關(guān)鍵問題:構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
11.定義新運(yùn)算
基本概念:定義一種新的運(yùn)算符號,這個新的運(yùn)算符號包含有多種基本(混合)運(yùn)算。
基本思路:嚴(yán)格根據(jù)新定義的運(yùn)算規(guī)章,把已知的數(shù)代入,轉(zhuǎn)化為加減乘除的運(yùn)算,然后根據(jù)基本運(yùn)算過程、規(guī)律進(jìn)行運(yùn)算。
關(guān)鍵問題:正確理解定義的運(yùn)算符號的意義。
留意事項:①新的運(yùn)算不肯定符合運(yùn)算規(guī)律,特殊留意運(yùn)算挨次。
②每個新定義的運(yùn)算符號只能在本題中使用。
12.數(shù)列求和
等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是肯定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;
項數(shù):等差數(shù)列的全部數(shù)的個數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;
通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:等差數(shù)列中涉及五個量:a1,an,d,n,sn,,通項公式中涉及四個量,假如己知其中三個,就可求出第四個;求和公式中涉及四個量,假如己知其中三個,就可以求這第四個。
基本公式:通項公式:an=a1+(n-1)d;
通項=首項+(項數(shù)一1)公差;
數(shù)列和公式:sn,=(a1+an)n2;
數(shù)列和=(首項+末項)項數(shù)2;
項數(shù)公式:n=(an+a1)d+1;
項數(shù)=(末項-首項)公差+1;
公差公式:d=(an-a1))(n-1);
公差=(末項-首項)(項數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式;
13.二進(jìn)制及其應(yīng)用
十進(jìn)制:用0~9十個數(shù)字表示,逢10進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2102+310+4。
=An10n-1+An-110n-2+An-210n-3+An-310n-4+An-410n-5+An-610n-7+……+A3102+A2101+A1100
留意:N0=1;N1=N(其中N是任意自然數(shù))
二進(jìn)制:用0~1兩個數(shù)字表示,逢2進(jìn)1;不同數(shù)位上的數(shù)字表示不同的含義。
(2)=An2n-1+An-12n-2+An-22n-3+An-32n-4+An-42n-5+An-62n-7
+……+A322+A221+A120
留意:An不是0就是1。
十進(jìn)制化成二進(jìn)制:
①依據(jù)二進(jìn)制滿2進(jìn)1的特點(diǎn),用2連續(xù)去除這個數(shù),直到商為0,然后把每次所得的余數(shù)按自下而上依次寫出即可。
②先找出不大于該數(shù)的2的n次方,再求它們的差,再找不大于這個差的2的`n次方,依此方法始終找到差為0,根據(jù)二進(jìn)制綻開式特點(diǎn)即可寫出。
14.加法乘法原理和幾何計數(shù)
加法原理:假如完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在其次類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。
關(guān)鍵問題:確定工作的分類方法。
基本特征:每一種方法都可完成任務(wù)。
乘法原理:假如完成一件任務(wù)需要分成n個步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。
關(guān)鍵問題:確定工作的完成步驟。
基本特征:每一步只能完成任務(wù)的一部分。
直線:一點(diǎn)在直線或空間沿肯定方向或相反方向運(yùn)動,形成的軌跡。
直線特點(diǎn):沒有端點(diǎn),沒有長度。
線段:直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn):有兩個端點(diǎn),有長度。
射線:把直線的一端無限延長。
射線特點(diǎn):只有一個端點(diǎn);沒有長度。
①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);
②數(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);
③數(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):
④數(shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
15.質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。
合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。
質(zhì)因數(shù):假如某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:N=,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1
求約數(shù)個數(shù)的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質(zhì)數(shù):假如兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。
16.約數(shù)與倍數(shù)
約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。
最大公約數(shù)的性質(zhì):
1、幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)。
2、幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)。
3、幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。
4、幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。
例如:12的約數(shù)有1、2、3、4、6、12;
18的約數(shù)有:1、2、3、6、9、18;
那么12和18的公約數(shù)有:1、2、3、6;
那么12和18最大的公約數(shù)是:6,記作(12,18)=6;
求最大公約數(shù)基本方法:
1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。
2、短除法:先找公有的約數(shù),然后相乘。
3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。
公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
12的倍數(shù)有:12、24、36、48……;
18的倍數(shù)有:18、36、54、72……;
那么12和18的公倍數(shù)有:36、72、108……;
那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
最小公倍數(shù)的性質(zhì):
1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。
2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。
求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法
17.數(shù)的整除
一、基本概念和符號:
1、整除:假如一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號“|”,不能整除符號“”;由于符號“∵”,所以的符號“∴”;
二、整除推斷方法:
1.能被2、5整除:末位上的數(shù)字能被2、5整除。
2.能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。
3.能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。
4.能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。
5.能被7整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除。
②逐次去掉最終一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。
6.能被11整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。
②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。
③逐次去掉最終一位數(shù)字并減去末位數(shù)字后能被11整除。
7.能被13整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。
②逐次去掉最終一位數(shù)字并減去末位數(shù)字的9倍后能被13整除。
三、整除的性質(zhì):
1.假如a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2.假如a能被b整除,c是整數(shù),那么a乘以c也能被b整除。
3.假如a能被b整除,b又能被c整除,那么a也能被c整除。
4.假如a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。
18.余數(shù)及其應(yīng)用
基本概念:對任意自然數(shù)a、b、q、r,假如使得a÷b=q……r,且0
余數(shù)的性質(zhì):
①余數(shù)小于除數(shù)。
②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。
③a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。
19.余數(shù)、同余與周期
一、同余的定義:
①若兩個整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。
②已知三個整數(shù)a、b、m,假如m|a-b,就稱a、b對于模m同余,記作a≡b(modm),讀作a同余于b模m。
二、同余的性質(zhì):
①自身性:a≡a(modm);
②對稱性:若a≡b(modm),則b≡a(modm);
③傳遞性:若a≡b(modm),b≡c(modm),則a≡c(modm);
④和差性:若a≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);
⑤相乘性:若a≡b(modm),c≡d(modm),則a×c≡b×d(modm);
⑥乘方性:若a≡b(modm),則an≡bn(modm);
⑦同倍性:若a≡b(modm),整數(shù)c,則a×c≡b×c(modm×c);
三、關(guān)于乘方的預(yù)備學(xué)問:
①若A=a×b,則MA=Ma×b=(Ma)b
②若B=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除后的余數(shù)特征:
①一個自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則M≡n(mod9)或(mod3);
②一個自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,Y表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod11);
五、費(fèi)爾馬小定理:假如p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(modp)。
20.分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用
基本概念與性質(zhì):
分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。
分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。
分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。
百分?jǐn)?shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。
常用方法:
①逆向思維方法:從題目供應(yīng)條件的反方向(或結(jié)果)進(jìn)行思索。
②對應(yīng)思維方法:找出題目中詳細(xì)的量與它所占的率的直接對應(yīng)關(guān)系。
③轉(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。
④假設(shè)思維方法:為了解題的便利,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種狀況成立,計算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最終結(jié)果。
⑤量不變思維方法:在變化的各個量當(dāng)中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種狀況:A、重量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的重量不變。C、總量和重量都發(fā)生變化,但重量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。
⑦同倍率法:總量和重量之間根據(jù)同分率變化的規(guī)律進(jìn)行處理。
⑧濃度配比法:一般應(yīng)用于總量和重量都發(fā)生變化的狀況。
21.分?jǐn)?shù)大小的比較
基本方法:
①通分分子法:使全部分?jǐn)?shù)的分子相同,依據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。
②通分分母法:使全部分?jǐn)?shù)的分母相同,依據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。
③基準(zhǔn)數(shù)法:確定一個標(biāo)準(zhǔn),使全部的分?jǐn)?shù)都和它進(jìn)行比較。
④分子和分母大小比較法:當(dāng)分子和分母的差肯定時,分子或分母越大的分?jǐn)?shù)值越大。
⑤倍率比較法:當(dāng)比較兩個分子或分母同時變化時分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(詳細(xì)運(yùn)用見同倍率變化規(guī)律)
⑥轉(zhuǎn)化比較方法:把全部分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。
⑦倍數(shù)比較法:用一個數(shù)除以另一個數(shù),結(jié)果得數(shù)和1進(jìn)行比較。
⑧大小比較法:用一個分?jǐn)?shù)減去另一個分?jǐn)?shù),得出的數(shù)和0比較。
⑨倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。
⑩基準(zhǔn)數(shù)比較法:確定一個基準(zhǔn)數(shù),每一個數(shù)與基準(zhǔn)數(shù)比較。
22.分?jǐn)?shù)拆分
一、將一個分?jǐn)?shù)單位分解成兩個分?jǐn)?shù)之和的公式:
①=+;
②=+(d為自然數(shù));
23.完全平方數(shù)
完全平方數(shù)特征:
1.末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.約數(shù)個數(shù)為奇數(shù);反之成立。
5.奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。
6.奇數(shù)平方個位數(shù)字是奇數(shù);偶數(shù)平方個位數(shù)字是偶數(shù)。
7.兩個相臨整數(shù)的平方之間不行能再有平方數(shù)。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:兩個數(shù)相除又叫兩個數(shù)的比。比號前面的數(shù)叫比的前項,比號后面的數(shù)叫比的后項。
比值:比的前項除以后項的商,叫做比值。
比的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45629.2-2025信息技術(shù)數(shù)據(jù)中心設(shè)備和基礎(chǔ)設(shè)施第2部分:建筑結(jié)構(gòu)
- 2026年供應(yīng)鏈金融風(fēng)險識別防控課
- 2026年農(nóng)村人居環(huán)境長效管護(hù)機(jī)制
- 2026湖北黃岡市武穴市公務(wù)員招聘78人備考題庫及1套參考答案詳解
- 機(jī)器人運(yùn)動控制算法開發(fā)與驗證手冊
- 2026遼寧大連產(chǎn)業(yè)園社招招聘備考題庫有完整答案詳解
- 2026年景區(qū)智慧導(dǎo)覽系統(tǒng)應(yīng)用培訓(xùn)
- 金融工程更全面的創(chuàng)業(yè)板投資標(biāo)尺-創(chuàng)業(yè)板綜合指數(shù)投資價值分析
- 杭氧股份空分設(shè)備構(gòu)筑基本盤工業(yè)氣體業(yè)務(wù)成新增長曲線
- 財政局綜合股培訓(xùn)課件
- DB 23T 1501-2013 水利堤(岸)坡防護(hù)工程格賓與雷諾護(hù)墊施工技術(shù)規(guī)范
- 《保險公司主持技巧》課件
- 服裝加工公司火災(zāi)事故應(yīng)急預(yù)案范例(3篇)
- 農(nóng)忙及春節(jié)期間施工進(jìn)度計劃保證措施
- 新增專業(yè)可行性論證報告
- 浙江省溫州市小升初英語真題2(含答案)
- 2025屆山東濰坊臨朐九年級化學(xué)第一學(xué)期期末綜合測試試題含解析
- FZT 82006-2018 機(jī)織配飾品行業(yè)標(biāo)準(zhǔn)
- 人教版小學(xué)1-4年級英文詞匯表
- 交警環(huán)衛(wèi)安全知識講座
- 中國通史課件
評論
0/150
提交評論