版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鎮(zhèn)江丹陽市市級名校2022年中考聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.92.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.3.下列各數(shù)中,相反數(shù)等于本身的數(shù)是()A.–1 B.0 C.1 D.24.在數(shù)軸上到原點距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道5.某校舉行運動會,從商場購買一定數(shù)量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.6.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.7.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x68.下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣39.已知代數(shù)式x+2y的值是5,則代數(shù)式2x+4y+1的值是()A.6
B.7C.11D.1210.下列運算結(jié)果正確的是()A.a(chǎn)3+a4=a7 B.a(chǎn)4÷a3=a C.a(chǎn)3?a2=2a3 D.(a3)3=a611.如圖,DE是線段AB的中垂線,,,,則點A到BC的距離是A.4 B. C.5 D.612.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為()A.45° B.50° C.55° D.60°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某物流倉儲公司用如圖A,B兩種型號的機器人搬運物品,已知A型機器人比B型機器人每小時多搬運20kg,A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等,設B型機器人每小時搬運xkg物品,列出關于x的方程為_____.14.對于任意實數(shù)m、n,定義一種運算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運算,例如:3※5=3×5﹣3﹣5+3=1.請根據(jù)上述定義解決問題:若a<2※x<7,且解集中有兩個整數(shù)解,則a的取值范圍是_____.15.若代數(shù)式x2﹣6x+b可化為(x+a)2﹣5,則a+b的值為____.16.如果一個正多邊形的中心角為72°,那么這個正多邊形的邊數(shù)是.17.某數(shù)學興趣小組在研究下列運算流程圖時發(fā)現(xiàn),取某個實數(shù)范圍內(nèi)的x作為輸入值,則永遠不會有輸出值,這個數(shù)學興趣小組所發(fā)現(xiàn)的實數(shù)x的取值范圍是_____.18.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點F到地面AB的距離.(精確到百分位)20.(6分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點F,如果∠AFE=∠D,求證:.21.(6分)如圖,在△OAB中,OA=OB,C為AB中點,以O為圓心,OC長為半徑作圓,AO與⊙O交于點E,OB與⊙O交于點F和D,連接EF,CF,CF與OA交于點G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.22.(8分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.23.(8分).在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.隨機地從布袋中摸出一個小球,則摸出的球為標有數(shù)字2的小球的概率為;小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內(nèi)點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內(nèi)點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.24.(10分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.25.(10分)學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.26.(12分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?27.(12分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點:列表法與樹狀法.2、D【解析】
找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;
左視圖有二列,從左往右分別有2,1個正方形;
俯視圖有三列,從上往下分別有3,1個正方形,
故選A.【點睛】本題考查了三視圖的知識,關鍵是掌握三視圖所看的位置.掌握定義是關鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關鍵.3、B【解析】
根據(jù)相反數(shù)的意義,只有符號不同的數(shù)為相反數(shù).【詳解】解:相反數(shù)等于本身的數(shù)是1.故選B.【點睛】本題考查了相反數(shù)的意義.注意掌握只有符號不同的數(shù)為相反數(shù),1的相反數(shù)是1.4、C【解析】
根據(jù)數(shù)軸上到原點距離等于3的數(shù)為絕對值是3的數(shù)即可求解.【詳解】絕對值為3的數(shù)有3,-3.故答案為C.【點睛】本題考查數(shù)軸上距離的意義,解題的關鍵是知道數(shù)軸上的點到原點的距離為絕對值.5、B【解析】試題分析:設每個筆記本的價格為x元,根據(jù)“用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程6、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據(jù)立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大小.考點:三視圖.7、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.8、C【解析】試題分析:根據(jù)頂點式,即A、C兩個選項的對稱軸都為x=2,再將(0,1)代入,符合的式子為C選項考點:二次函數(shù)的頂點式、對稱軸點評:本題考查學生對二次函數(shù)頂點式的掌握,難度較小,二次函數(shù)的頂點式解析式為y=(x-a)2+h,頂點坐標為9、C【解析】
根據(jù)題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【點睛】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.10、B【解析】
分別根據(jù)同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.11、A【解析】
作于利用直角三角形30度角的性質(zhì)即可解決問題.【詳解】解:作于H.
垂直平分線段AB,
,
,
,
,
,
,
,,
,
故選A.【點睛】本題考查線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.12、B【解析】
先根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),再由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì),圓周角定理.圓內(nèi)接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據(jù)“A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等”可列方程.【詳解】設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據(jù)題意可得,故答案為.【點睛】本題考查了由實際問題抽象出分式方程,解題的關鍵是根據(jù)數(shù)量關系列出關于x的分式方程.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)量關系列出方程是關鍵.14、【解析】
解:根據(jù)題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數(shù)解,∴a的范圍為,故答案為.【點睛】本題考查一元一次不等式組的整數(shù)解,準確理解題意正確計算是本題的解題關鍵.15、1【解析】
根據(jù)題意找到等量關系x2﹣6x+b=(x+a)2﹣5,根據(jù)系數(shù)相等求出a,b,即可解題.【詳解】解:由題可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b=x2+2ax+a2-5,即-6=2a,b=a2-5,解得:a=-3,b=4,∴a+b=1.【點睛】本題考查了配方法的實際應用,屬于簡單題,找到等量關系求出a,b是解題關鍵.16、5【解析】試題分析:中心角的度數(shù)=,考點:正多邊形中心角的概念.17、【解析】
通過找到臨界值解決問題.【詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數(shù)值越來越大,會有輸出值;當x<時,數(shù)值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【點睛】本題考查不等式的性質(zhì),解題的關鍵是理解題意,學會找到臨界值解決問題.18、2【解析】
根據(jù)題意、解直角三角形、菱形的性質(zhì)、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.【點睛】本題考查翻折變化、平行線的性質(zhì)、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2)6.03米【解析】
分析:延長ED,AM交于點P,由∠CDE=162°及三角形外角的性質(zhì)可得出結(jié)果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長ED,AM交于點P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點F到地面AB的距離為6.03米.點睛:本題考查了解直角三角形的應用,解決此類問題要了解角之間的關系,找到已知和未知相關聯(lián)的的直角三角形,當圖形中沒有直角三角形時,要通過作高線或垂線構造直角三角形.20、見解析【解析】
(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四邊形ADEF是平行四邊形,∴DE=AF,∴.【點睛】本題考查相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.21、(1)見解析;(2)見解析;(3).【解析】
(1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;
(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;
(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【點睛】考查圓的綜合題,考查切線的判定、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關鍵是靈活運用所學知識解決問題.22、(1)25π;(2)點B的坐標為或;(3)m≤-5或m≥2【解析】
(1)根據(jù)勾股定理,可得AB的長,根據(jù)圓的面積公式,可得答案;(2)根據(jù)確定圓,可得l與⊙A相切,根據(jù)圓的面積,可得AB的長為3,根據(jù)等腰直角三角形的性質(zhì),可得,可得答案;(3)根據(jù)圓心與直線垂直時圓心到直線的距離最短,根據(jù)確定圓的面積,可得PB的長,再根據(jù)30°的直角邊等于斜邊的一半,可得CA的長.【詳解】(1)(1)∵A的坐標為(?1,0),B的坐標為(3,3),∴AB==5,根據(jù)題意得點A,B的“確定圓”半徑為5,∴S圓=π×52=25π.故答案為25π;(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,∴⊙A的半徑AB=3且直線y=x+b與⊙A相切于點B,如圖,∴AB⊥CD,∠DCA=45°.,①當b>0時,則點B在第二象限.過點B作BE⊥x軸于點E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②當b<0時,則點B'在第四象限.同理可得.綜上所述,點B的坐標為或.(3)如圖2,,直線當y=0時,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直線的距離最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),當m≤-5或m≥2時,PD的距離大于或等于4,點A,B的“確定圓”的面積都不小于9π.點A,B的“確定圓”的面積都不小于9π,m的范圍是m≤-5或m≥2.【點睛】本題考查了一次函數(shù)綜合題,解(1)的關鍵是利用勾股定理得出AB的長;解(2)的關鍵是等腰直角三角形的性質(zhì)得出;解(3)的關鍵是利用30°的直角邊等于斜邊的一半得出PC=2PB.23、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結(jié)果總數(shù),摸出標有數(shù)字2的小球有1種可能,因此摸出的球為標有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結(jié)果數(shù),再找出點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù),可求得結(jié)果.試題解析:(1)P(摸出的球為標有數(shù)字2的小球)=;(2)列表如下:小華
小麗
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9種等可能的結(jié)果數(shù),其中點M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù)為6,∴P(點M落在如圖所示的正方形網(wǎng)格內(nèi))==.考點:1列表或樹狀圖求概率;2平面直角坐標系.24、(1)12;(2)1【解析】
(1)根據(jù)四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據(jù)樹狀圖即可得到共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.25、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】
(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026秋招:福建機電控股公司面試題及答案
- 2026秋招:兒童編程教育筆試題及答案
- 2026秋招:電工面試題及答案
- 2026秋招:廚師題目及答案
- 培訓首課制度
- 哈工大降級制度
- 吊裝的售后服務制度
- 危險廢物安保制度
- 陜西省2026年高三二模高考數(shù)學模擬試卷(含答案詳解)
- 十二師采購制度
- 服務外包人員保密管理制度(3篇)
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫及答案詳解(奪冠系列)
- 成都高新區(qū)桂溪街道公辦幼兒園招聘編外人員考試備考題庫及答案解析
- 2025年醫(yī)院病歷管理操作規(guī)范
- 2026云南保山電力股份有限公司校園招聘50人筆試備考題庫及答案解析
- GB 4053.2-2025固定式金屬梯及平臺安全要求第2部分:斜梯
- 2026屆上海市長寧區(qū)市級名校高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2026年煙草公司筆試綜合試題及考點實操指引含答案
- 九年級寒假期末總結(jié)課件
- 壓鑄機作業(yè)人員安全培訓課件
- 新產(chǎn)品研發(fā)質(zhì)量管控流程詳解
評論
0/150
提交評論