2022-2023學(xué)年新疆石河子市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
2022-2023學(xué)年新疆石河子市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
2022-2023學(xué)年新疆石河子市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
2022-2023學(xué)年新疆石河子市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
2022-2023學(xué)年新疆石河子市第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)列-1,x,y,z,-2成等比數(shù)列,則xyz等于A.-4 B. C. D.2.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.3.已知數(shù)列滿足,,且,則A.4 B.5 C.6 D.84.在中,設(shè)角,,的對邊分別是,,,若,,,則其面積等于()A. B. C. D.5.設(shè)集合,則()A. B. C. D.6.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.87.當點到直線的距離最大時,m的值為()A.3 B.0 C. D.18.已知圓和圓只有一條公切線,若,且,則的最小值為()A.2 B.4 C.8 D.99.已知等差數(shù)列的公差,前項和為,則對正整數(shù),下列四個結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)10.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的圖象如下,則點的坐標是()A.(,) B.(,)C.(,) D.(,)二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)是定義在上以2為周期的偶函數(shù),已知,,則函數(shù)在上的解析式是12.在中,,則_____________13.直線與圓交于兩點,若為等邊三角形,則______.14.記等差數(shù)列的前項和為,若,則________.15.將函數(shù)f(x)=cos(2x)的圖象向左平移個單位長度后,得到函數(shù)g(x)的圖象,則下列結(jié)論中正確的是_____.(填所有正確結(jié)論的序號)①g(x)的最小正周期為4π;②g(x)在區(qū)間[0,]上單調(diào)遞減;③g(x)圖象的一條對稱軸為x;④g(x)圖象的一個對稱中心為(,0).16.魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴絲合縫的十字立方體,其上下、左右、前后完全對稱.從外表上看,六根等長的正四棱柱體分成三組,經(jīng)榫卯起來,如圖3,若正四棱柱體的高為,底面正方形的邊長為,現(xiàn)將該魯班鎖放進一個球形容器內(nèi),則該球形容器的表面積的最小值為__________.(容器壁的厚度忽略不計)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知點和點,,且,其中為坐標原點.(1)若,設(shè)點為線段上的動點,求的最小值;(2)若,向量,,求的最小值及對應(yīng)的的值.18.已知等差數(shù)列與等比數(shù)列滿足,,且.(1)求數(shù)列,的通項公式;(2)設(shè),是否存在正整數(shù),使恒成立?若存在,求出的值;若不存在,請說明理由.19.已知,,函數(shù).(1)求在區(qū)間上的最大值和最小值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.20.已知f(x)=(Ⅰ)化簡f(x);(Ⅱ)若x是第三象限角,且tanx=2,求f(x)21.如圖,單位圓與軸正半軸相交于點,圓上的動點從點出發(fā)沿逆時針旋轉(zhuǎn)一周回到點,設(shè)(),的面積為(當三點共線時,),與的函數(shù)關(guān)系如圖所示的程序框圖.(1)寫出程序框圖中①②處的函數(shù)關(guān)系式;(2)若輸出的值為,求點的坐標.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】.2、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.3、B【解析】

利用,,依次求,觀察歸納出通項公式,從而求出的值.【詳解】∵數(shù)列滿足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此歸納猜想,∴.故選B.【點睛】本題考查了一個教復(fù)雜的遞推關(guān)系,本題的難點在于數(shù)列的項位于指數(shù)位置,不易化簡和轉(zhuǎn)化,一般的求通項方法無法解決,當遇見這種情況時一般我們就可以用“歸納”的方法處理,即通過求幾項,然后觀察規(guī)律進而得到結(jié)論.4、C【解析】

直接利用三角形的面積的公式求出結(jié)果.【詳解】解:中,角,,的對邊邊長分別為,,,若,,,則,故選:.【點睛】本題考查的知識要點:三角形面積公式的應(yīng)用及相關(guān)的運算問題,屬于基礎(chǔ)題.5、B【解析】試題分析:由已知得,,故,選B.考點:集合的運算.6、B【解析】

由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當且僅當nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用≥或≤時等號能否同時成立).7、C【解析】

求得直線所過的定點,當和直線垂直時,距離取得最大值,根據(jù)斜率乘積等于列方程,由此求得的值.【詳解】直線可化為,故直線過定點,當和直線垂直時,距離取得最大值,故,故選C.【點睛】本小題主要考查含有參數(shù)的直線過定點的問題,考查點到直線距離的最值問題,屬于基礎(chǔ)題.8、D【解析】

由題意可得兩圓相內(nèi)切,根據(jù)兩圓的標準方程求出圓心和半徑,可得,再利用“1”的代換,使用基本不等式求得的最小值.【詳解】解:由題意可得兩圓相內(nèi)切,兩圓的標準方程分別為,,圓心分別為,,半徑分別為2和1,故有,,,當且僅當時,等號成立,的最小值為1.故選:.【點睛】本題考查兩圓的位置關(guān)系,兩圓相內(nèi)切的性質(zhì),圓的標準方程的特征,基本不等式的應(yīng)用,得到是解題的關(guān)鍵和難點.9、D【解析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯誤,(2)正確,由上顯然有,,,,故(3)錯誤,(4)正確.即填(2)(4).考點:等差數(shù)列的前項和,等差數(shù)列與等比數(shù)列的定義.10、C【解析】

由函數(shù)f(x)的部分圖象求得A、T、ω和φ的值即可.【詳解】由函數(shù)f(x)=Asin(ωx+φ)的部分圖象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1時,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴點P(,).故選C.【點睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:根據(jù)題意,由于是定義在上以2為周期的偶函數(shù),那么當,,可知當x,,那么利用周期性可知,在上的解析式就是將x,的圖像向右平移2個單位得到的,因此可知,答案為.考點:函數(shù)奇偶性、周期性的運用點評:解決此類問題的關(guān)鍵是熟練掌握函數(shù)的有關(guān)性質(zhì),即周期性,奇偶性,單調(diào)性等有關(guān)性質(zhì).12、【解析】

先由正弦定理得到,再由余弦定理求得的值.【詳解】由,結(jié)合正弦定理可得,故設(shè),,(),由余弦定理可得,故.【點睛】本題考查了正弦定理和余弦定理的運用,屬于基礎(chǔ)題.13、或【解析】

根據(jù)題意可得圓心到直線的距離為,根據(jù)點到直線的距離公式列方程解出即可.【詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【點睛】本題主要考查了直線和圓相交的弦長公式,以及點到直線的距離公式,考查運算能力,屬于中檔題.14、10【解析】

由等差數(shù)列求和的性質(zhì)可得,求得,再利用性質(zhì)可得結(jié)果.【詳解】因為,所以,所以,故故答案為10【點睛】本題考查了等差數(shù)列的性質(zhì),熟悉其性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.15、②④.【解析】

利用函數(shù)的圖象的變換規(guī)律求得的解析式,再利用三角函數(shù)的周期性、單調(diào)性、圖象的對稱性,即可求解,得到答案.【詳解】由題意,將函數(shù)的圖象向左平移個單位長度后,得到的圖象,則函數(shù)的最小正周期為,所以①錯誤的;當時,,故在區(qū)間單調(diào)遞減,所以②正確;當時,,則不是函數(shù)的對稱軸,所以③錯誤;當時,,則是函數(shù)的對稱中心,所以④正確;所以結(jié)論正確的有②④.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì)的判定,其中解答熟記三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì),準確判定是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.16、【解析】表面積最小的球形容器可以看成長、寬、高分別為1、2、6的長方體的外接球.設(shè)其半徑為R,,所以該球形容器的表面積的最小值為.【點睛】將表面積最小的球形容器,看成其中兩個正四棱柱的外接球,求其半徑,進而求體積.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),或.【解析】

(1)設(shè),求出,把表示成關(guān)于的二次函數(shù);(2)利用向量的坐標運算得,令把表示成關(guān)于的二次函數(shù),再求最小值.【詳解】(1)設(shè),又,所以,,所以當時,取得最小值.(2)由題意得,,,則=,令,因為,所以,又,所以,,所以當時,取得最小值,即,解得或,所以當或時,取得最小值.【點睛】本題考查利用向量的坐標運算求向量的模和數(shù)量積,在求解過程中用到知一求二的思想方法,即已知三個中的一個,另外兩個均可求出.18、(1),.(2)存在正整數(shù),,證明見解析【解析】

(1)根據(jù)題意,列出關(guān)于d與q的兩個等式,解方程組,即可求出。(2)利用錯位相減求出,再討論求出的最小值,對應(yīng)的n值即為所求的k值?!驹斀狻浚?)解:設(shè)等差數(shù)列與等比數(shù)列的公差與公比分別為,,則,解得,于是,,.(2)解:由,即,①,②①②得:,從而得.令,得,顯然、所以數(shù)列是遞減數(shù)列,于是,對于數(shù)列,當為奇數(shù)時,即,,,…為遞減數(shù)列,最大項為,最小項大于;當為偶數(shù)時,即,,,…為遞增數(shù)列,最小項為,最大項大于零且小于,那么數(shù)列的最小項為.故存在正整數(shù),使恒成立.【點睛】本題考查等差等比數(shù)列,利用錯位相減法求差比數(shù)列的前n項和,并討論其最值,屬于難題。19、(1)(2)【解析】

(1)利用向量的數(shù)量積化簡即可得,再根據(jù),求出的范圍結(jié)合圖像即可解決.(2)根據(jù)(1)求出,再根據(jù)正弦函數(shù)的單調(diào)性求出的單調(diào)區(qū)間即可.【詳解】解:(1)因為所以,所以,所以(2)解法一:令得因為函數(shù)在上是單調(diào)遞增函數(shù),所以存在,使得,所以有因為,所以所以,又因為,得所以從而有所以,所以解法二:由,得因為所以所以解得又所以【點睛】本題主要考查了正弦函數(shù)在給定區(qū)間是的最值以及根據(jù)根據(jù)函數(shù)的單調(diào)性求參數(shù).屬于中等題,解決本題的關(guān)鍵是記住正弦函數(shù)的單調(diào)性、最值等.20、(Ⅰ)f(x)=cosx【解析】

(Ⅰ)利用誘導(dǎo)公式進行化簡即可,注意符號正負;(Ⅱ)根據(jù)化簡的的結(jié)果以及給出的條件,利用同角的三角函數(shù)的基本關(guān)系求解.【詳解】解:(Ⅰ)f(x)=(Ⅱ)∵tanx=2,∴sinx=2cosx∵x是第三象限角,∴f(x)=【點睛】(1)誘導(dǎo)公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論