版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年山東省濰坊市青州實驗中學高二數(shù)學理下學期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設集合,則A所表示的平面區(qū)域(不含邊界的陰影部分)是(
)參考答案:A2.曲線在點處的切線方程為(
).A、
B、
C、
D、參考答案:A略3.下列命題:①空集是任何集合的子集;②若整數(shù)是素數(shù),則是奇數(shù);③若空間中兩條直線不相交,則這兩條直線平行;④其中真命題的個數(shù)是
A.1個
B.2個
C.3個
D.4個參考答案:B4.由1,2,3,4,5,6組成沒有重復數(shù)字的三位數(shù),其中偶數(shù)的個數(shù)為(
)A.20 B.30 C.60 D.120參考答案:C【分析】由題意先確定個位數(shù)字,再從剩下的五個數(shù)字中選出2個進行排列,即可得出結果.【詳解】由1,2,3,4,5,6組成沒有重復數(shù)字的三位偶數(shù),可得末尾只能是2、4、6中的一個,再從剩下的五個數(shù)字選出兩個排在百位和十位即可,因此,偶數(shù)的個數(shù)為.故選C【點睛】本題主要考查排列組合問題,根據(jù)特殊問題優(yōu)先考慮原則即可求解,屬于基礎題型.5.設f(x)=x﹣sinx,則f(x)()A.既是奇函數(shù)又是減函數(shù) B.既是奇函數(shù)又是增函數(shù)C.是有零點的減函數(shù) D.是沒有零點的奇函數(shù)參考答案:B【考點】6A:函數(shù)的單調(diào)性與導數(shù)的關系;H3:正弦函數(shù)的奇偶性;H5:正弦函數(shù)的單調(diào)性.【分析】利用函數(shù)的奇偶性的定義判斷f(x)為奇函數(shù),再利用導數(shù)研究函數(shù)的單調(diào)性,從而得出結論.【解答】解:由于f(x)=x﹣sinx的定義域為R,且滿足f(﹣x)=﹣x+sinx=﹣f(x),可得f(x)為奇函數(shù).再根據(jù)f′(x)=1﹣cosx≥0,可得f(x)為增函數(shù),故選:B.【點評】本題主要考查函數(shù)的奇偶性的判斷方法,利用導數(shù)研究函數(shù)的單調(diào)性,屬于基礎題.6.乒乓球運動員10人,其中男女運動員各5人,從這10名運動員中選出4人進行男女混合雙打比賽,選法種數(shù)為(
)A. B. C. D.參考答案:A7.設數(shù)列的通項公式為,則(
)(A)153
(B)210
(C)135
(D)120參考答案:A略8.一個正方體內(nèi)接于一個球,過這個球的球心作一平面,則截面圖形不可能是()
參考答案:D9.已知為正實數(shù),且成等差數(shù)列,成等比數(shù)列,則的取值范圍是
(
)A.
B.
C.
D.參考答案:D10.已知函數(shù),若對,,都有成立,則a的取值范圍是(
)A. B.(-∞,1] C. D.(-∞,e]參考答案:C【分析】通過變形可將問題轉化為對,單調(diào)遞減;即在上恒成立;通過分離變量的方式可求得的取值范圍.【詳解】由且得:對,,都有令,則則只需對,單調(diào)遞減即可即在上恒成立
令,則當時,,則在上單調(diào)遞減當時,,則在上單調(diào)遞增
本題正確選項:【點睛】本題考查根據(jù)函數(shù)在區(qū)間內(nèi)的單調(diào)性求解參數(shù)范圍問題,關鍵是能夠將原題中的恒成立的關系轉化為函數(shù)單調(diào)性的問題,從而通過分離變量的方式來求解.二、填空題:本大題共7小題,每小題4分,共28分11.若A、B、C分別是的三內(nèi)角,則的最小值為_________。參考答案:略12.已知是的充分條件而不是必要條件,是的充分條件,是的必要條件,是的必要條件?,F(xiàn)有下列命題:①是的充要條件;②是的充分條件而不是必要條件;③是的必要條件而不是充分條件;④的必要條件而不是充分條件;⑤是的充分條件而不是必要條件,則正確命題序號是_________。參考答案:①②④略13.設m∈R,過定點A的動直線x+my=0和過定點B的直線mx﹣y﹣m+3=0交于點P(x,y),則|PA|+|PB|的最大值是.參考答案:【考點】兩點間距離公式的應用.【專題】函數(shù)思想;整體思想;綜合法;直線與圓.【分析】由直線過定點可得AB的坐標,由直線垂直可得|PA|2+|PB|2=|AB|2=10,由基本不等式可得.【解答】解:由題意可得動直線x+my=0過定點A(0,0),直線mx﹣y﹣m+3=0可化為(x﹣1)m+3﹣y=0,令可解得,即B(1,3),又1×m+m×(﹣1)=0,故兩直線垂直,∴|PA|2+|PB|2=|AB|2=10,由基本不等式可得10=|PA|2+|PB|2=(|PA|+|PB|)2﹣2|PA||PB|≥(|PA|+|PB|)2﹣2()2=(|PA|+|PB|)2,∴(|PA|+|PB|)2≤20,解得|PA|+|PB|≤2當且僅當|PA|=|PB|=時取等號.故答案為:2.【點評】本題考查兩點間的距離公式,涉及直線過定點和整體利用基本不等式求最值,屬中檔題.14.籃球運動員在比賽中每次罰球命中得1分,罰不中得0分,已知某運動員罰球命中的概率為0.7,則他罰球2次(每次罰球結果互不影響)的得分的數(shù)學期望是
;參考答案:1.415.梯形ABCD中,AB∥CD,AB平面,CD平面,則直線CD與平面的位置關系是
▲
;參考答案:CD∥平面
略16.設,則是
的
條件。(填充分不必要,必要不充分,充要條件或既不充分也不必要)參考答案:必要不充分17.已知中,銳角B所對邊,其外接圓半徑,三角形面積,則三角形其它兩邊的長分別為
.w參考答案:5cm,8cm
三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(本小題滿分12分)函數(shù)的定義域為,(1)求集合;(2)若,求實數(shù)的取值范圍.參考答案:(1)
(2)當,即時,,滿足
當,即時,
,∴或
,解得
當,即時,
,∴或
,解得或(12分)
綜上,∴滿足條件的的取值范圍為或
19.如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置(如圖2),連結PC,PB構成一個四棱錐P-ABCD.(Ⅰ)求證;(Ⅱ)若PA⊥平面ABCD.①求二面角的大??;②在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為45°,求的值.參考答案:(Ⅰ)詳見解析;(Ⅱ)①120°,②或.【分析】(Ⅰ)可以通過已知證明出平面PAB,這樣就可以證明出;(Ⅱ)①以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出相應點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大??;②求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:(Ⅰ)在圖1中,,,為平行四邊形,,,,當沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:(Ⅱ)①以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設平面PBC的法向量為y,,則,取,得0,,設平面PCD的法向量b,,則,取,得1,,設二面角的大小為,可知為鈍角,則,.二面角的大小為.②設AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點問題.20.(本小題滿分12分)如圖,已知平行六面體ABCD—A1B1C1D1的底面為矩形,O-1,O分別為上、下底面的中心,且A1在底面ABCD的射影是O,AB=8,BC=AA1=6.求證:平面O1DC⊥平面ABCD;若點E、F分別在棱AA1、BC上,且AE=2EA1,問點F在何處時EF⊥AD;在(2)的條件下,求F到平面CC1O1距離.
參考答案:(1)證明:∵A1O1OC
∴A1OCO1為平行四邊形
∴A1O∥O1C··························································································2分∵A1O⊥平面ABCD∴O1C⊥平面ABCD···············································································3分∴平面O1DC⊥平面ABCD·······································································4分(2)解:在AO上取點G,使AG=2GO,則EG∥A1O∴EG⊥平面ABCD∴當且僅當FG⊥AD時,EF⊥AD∴FG∥AB∵CG=2AG∴CF=2BF即當CF=2FB時,結論成立.··································································7分
(3)解:作FH⊥AC∵CO1⊥平面ABCD∴平面C1O1C⊥平面ABCD∴FH⊥面C1O1C∵△FCH∽△ACB∴而AC=10,CF=4
∴∴F到平面CC1O1的距離為···················································12分略21.(本小題滿分14分)如圖,在正方體中,(1)求異面直線與
所成的角;
(2)求證
參考答案:略22.某電視生產(chǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 變壓器安裝調(diào)試技術要點
- 施工機械考試題及答案
- 實驗五升六考試題及答案
- 森林公安執(zhí)法試題及答案
- 北京市通州區(qū)2024-2025學年八年級上學期期末地理試卷(含答案)
- 輔警安全防護培訓課件
- 小兒肺炎的護理跨文化研究與護理實踐
- 2026年大學大二(康復治療技術)康復評定綜合階段測試試題及答案
- 2026年深圳中考物理答題規(guī)范特訓試卷(附答案可下載)
- 2026年深圳中考數(shù)學函數(shù)專項提分試卷(附答案可下載)
- 華東理工大學2026年管理與其他專業(yè)技術崗位統(tǒng)一招聘備考題庫含答案詳解
- 2026上海碧海金沙投資發(fā)展有限公司社會招聘參考題庫含答案
- 2026四川成都市金牛區(qū)城市管理局招聘編外聘用工作人員2人參考題庫必考題
- 輸血科質(zhì)控 年度總結匯報
- 2026年浙江高考語文考試真題
- 牛羊肉精深加工項目可行性研究報告
- 普通國省道養(yǎng)護工程(線預防養(yǎng)護)設計說明
- FZT 43046-2017 錦綸彈力絲織物
- 無人駕駛(從想象到現(xiàn)實)
- 三片罐行業(yè)分析
- 道德經(jīng)和道家智慧課件
評論
0/150
提交評論