版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
FieldandWaveElectromagnetic電磁場與電磁波第17講11.Faraday’sLawofElectromagneticInductionReview22.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform
SignificanceFaraday’slaw(電磁感應定律)Ampere’scircuitallaw(全電流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通連續(xù)性原理)34.PotentialFunctions5.WaveEquationsandTheirSolutions4Maxwell’sequationsandalltheequationsderivedfromthemsofarinthischapterholdforelectromagneticquantitieswithanarbitrarytime-dependence(時間任意相關(guān)).Theactualtypeoftimefunctionsthatthefieldquantitiesassumedependson(取決于)thesource(源)functions
andJ.Inengineering,oneofthe
mostimportant
casesoftime-varyingelectromagneticfieldsisthe
time-harmonic(sinusoidal)field(時諧場、正弦場).Inthistypeoffield,the
excitation
sourcevaries
sinusoidally
intimewith
a
singlefrequency(單一頻率).In
alinearsystem(線性系統(tǒng)),asinusoidallyvarying
source
generates
fields
thatalsovarysinusoidallyintimeatallpointsinthesystem(正弦變化的源產(chǎn)生正弦變化的場).1)whatisTime-HarmonicFields3.Time-HarmonicFields52)討論時諧場(正弦信號)的原因Whenfieldsareexaminedinthismanner,thereisnolossingeneralityas(a)Theyareeasytogenerate(b)anytime-varyingperiodicfunctioncanberepresentedbyaFourierseriesintermsofsinusoidalfunctions(c)theprincipleofsuperpositioncanbeappliedunderlinearconditions.Inotherwords,wecanobtainthecompleteresponseoftimevaryingperiodicfieldsbyusinglinearcombinationsofmonochromaticresponses(a)正弦信號容易產(chǎn)生,50Hz交流電,通信的載波都是正弦信號(b)從信號分析的角度來看,正弦信號是一種簡單基本的信號。正弦信號進行各種運算(加減微分積分后仍為同頻率正弦信號)(c)傅立葉分析:任意周期信號分解為不同頻率的正弦之和(d)線性系統(tǒng)的疊加原理63.1
電路中的相量表達式Incircuittheory,youhavealreadyusedthephasornotation(相量)torepresentvoltagesandcurrentsvaryingsinusoidally
intime(1)Instantaneous(time-dependent)expressionofasinusoidalscalarquantity(瞬時值)三角函數(shù)表達式3Parameters:
angularfrequency:
amplitude:Im
phase:(2)
復數(shù)的表示xjyP(x,y)復平面上一點P7(3)正弦表達式和相量表達式的對應關(guān)系相量的模正弦量的幅值初位相復角頻率是已知?頻率相量乘以ejt,再取實部8EXAMPLE7-6P337-33893.2
Time-harmonicElectromagneticsFieldvectorsthatvarywithspacecoordinatesandaresinusoidalfunctionsoftimecansimilarlyberepresentedbyvectorphasors(矢量相量)thatdependonspacecoordinatesbutnotontime.Asanexample,wecanwriteatime-harmonicE
fieldreferringtocostaswhereE(x,y,z)isavectorphasor
(矢量相量)thatcontainsinformationondirection(方向),magnitude(振幅),andphase(相位).Phasorsare,ingeneral,complexquantities.weseethat,ifE(x,y,z,t)istoberepresentedbythevectorphasor
E(x,y,z),thenE(x,y,z,t)/tandE(x,y,z,t)dtwouldberepresentedby,respectively,vectorphasors
jE(x,y,z)
andE(x,y,z)/j.Higher-orderdifferentiationsandintegrationswithrespecttowouldberepresented,respectively,bymultiplicationsanddivisionsofthephasor
E(x,y,z)byhigherpowersofj.1011已知正弦電磁場的場與源的頻率相同,因此可用復矢量形式表示麥克斯韋方程??紤]到正弦時間函數(shù)的時間導數(shù)為或因此,麥克斯韋第一方程可表示為上式對于任何時刻均成立,實部符號可以消去,即12瞬時值由相量值代替時間求導由jω代替Wenowwritetime-harmonicMaxwell’sequations(時諧麥克斯韋方程組)intermsofvectorfieldphasors(E,H)andsourcephasors(,J)inasimple(linear,isotropic,andhomogenous)mediumasfollows.13Thetime-harmonicwaveequations(時諧波動方程)forEandHbecome,respectively,Thetime-harmonicwaveequationsforscalarpotentialVandvectorpotentialAbecome,respectively,Letiscalledthewavenumber.14Then
Considerthetimedelayfactor,forasinusoidalfunctionitleadstoaphasedelayof.
Weobtain15ThecomplexLorentzconditionis
Thecomplexelectricandmagneticfieldscanbeexpressedintermsofthecomplexpotentialsas
163.3
source-free(無源)fieldsinsimplemediaInasimple,nonconducting(非導電)source-freemediumcharacterizedby=0,J=0,=0,thetime-harmonicMaxwell’sequationsbecome
17whicharehomogeneousvectorHelmholtz’sequations(齊次矢量亥姆霍茲方程).andwaveequationsforAandV
becomeThetime-harmonicwaveequationsforEandHbecome,respectively,Letiscalledthewavenumber.18Ifthesimplemediumisconducting(0)(導電介質(zhì)),acurrentJ=Ewillflow,andtheequationshouldbechangedtowithTheotherthreeequationsinMaxwell’sequationareunchanged.Hence,allthepreviousequationsfornonconducting(非導電)mediawillapplytoconductingmediaifisreplacedbythecomplexpermittivity
c.Meanwhile,thereal(實數(shù))
wavenumber
kinthehelmholtz’sequationsshouldbechangedtoacomplex(復數(shù))
wavenumber:19Theratio’’/’
iscalledalosstangent(損耗正切)becauseitisameasureofthepowerlossinthemedium:Thequantityc
maybecalledthelossangle(損耗角).Amediumissaidtobeagoodconductor(良導體)if>>,andagoodinsulator(良絕緣體)if<<.Thus,amaterialmaybeagoodconductoratlowfrequencies(低頻)butmayhavethepropertiesofalossydielectricatveryhighfrequencies(高頻).201.Faraday’sLawofElectromagneticInductionReview212.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform
SignificanceFaraday’slaw(電磁感應定律)Ampere’scircuitallaw(全電流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通連續(xù)性原理)224.PotentialFunctions5.WaveEquationsandTheirSolutions236.Time-HarmonicFields相量的模正弦量的幅值初位相復角頻率是已知?頻率相量乘以ejt,再取實部24dx25P.7-7P34926P.7-13P35127梯度運算符合以下規(guī)則:C為常數(shù)散度運算規(guī)則旋度運算規(guī)則28P.7-25P3522930P.7-30P35331Theelectricfieldintensityinasource-freedielectric()regionisgivenas(V/m),whereangularfrequency,allareconstants.Find:Example.(1)Thephasorrepresentationofelectricfieldintens
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第03講 庖丁解牛(寒假預習講義)【含答案詳解】
- 公共交通安全事故處理制度
- 2025年企業(yè)財務成本分析與控制手冊
- 超市員工培訓及銷售培訓制度
- 超市商品銷售及數(shù)據(jù)分析制度
- 2026年深圳市南山區(qū)松坪文理幼兒園招聘備考題庫參考答案詳解
- 中國-東盟博覽會秘書處2025年下半年公開招聘備考題庫帶答案詳解
- 敦煌國際酒店起重吊裝專項施工方案
- 2026年鄭州四中教育集團教師招聘備考題庫完整參考答案詳解
- 公章的管理制度
- 人教版二年級上冊數(shù)學全冊教案(新版教材)
- SL∕T 291-2020 水利水電工程鉆探規(guī)程(水利)
- 2024全員安全生產(chǎn)應知應會手冊
- 大學生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)(創(chuàng)新創(chuàng)業(yè)課程)全套教學課件
- 苗木修剪施工方案
- 通用變速箱4L60E培訓
- 220KVSF6斷路器檢修指導作業(yè)書
- 采購崗位職責及考核人員要求
- GB/T 97.1-2002平墊圈A級
- GB/T 4436-2012鋁及鋁合金管材外形尺寸及允許偏差
- GB/T 4389-2013雙頭呆扳手、雙頭梅花扳手、兩用扳手頭部外形的最大尺寸
評論
0/150
提交評論