數(shù)理統(tǒng)計(jì)的基本概念教學(xué)課件_第1頁(yè)
數(shù)理統(tǒng)計(jì)的基本概念教學(xué)課件_第2頁(yè)
數(shù)理統(tǒng)計(jì)的基本概念教學(xué)課件_第3頁(yè)
數(shù)理統(tǒng)計(jì)的基本概念教學(xué)課件_第4頁(yè)
數(shù)理統(tǒng)計(jì)的基本概念教學(xué)課件_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

6、紀(jì)律是自由的第一條件。——黑格爾7、紀(jì)律是集體的面貌,集體的聲音,集體的動(dòng)作,集體的表情,集體的信念?!R卡連柯8、我們現(xiàn)在必須完全保持黨的紀(jì)律,否則一切都會(huì)陷入污泥中?!R克思9、學(xué)校沒(méi)有紀(jì)律便如磨坊沒(méi)有水?!涿兰~斯10、一個(gè)人應(yīng)該:活潑而守紀(jì)律,天真而不幼稚,勇敢而魯莽,倔強(qiáng)而有原則,熱情而不沖動(dòng),樂(lè)觀(guān)而不盲目?!R克思數(shù)理統(tǒng)計(jì)的基本概念ppt課件數(shù)理統(tǒng)計(jì)的基本概念ppt課件6、紀(jì)律是自由的第一條件?!诟駹?、紀(jì)律是集體的面貌,集體的聲音,集體的動(dòng)作,集體的表情,集體的信念?!R卡連柯8、我們現(xiàn)在必須完全保持黨的紀(jì)律,否則一切都會(huì)陷入污泥中。——馬克思9、學(xué)校沒(méi)有紀(jì)律便如磨坊沒(méi)有水。——夸美紐斯10、一個(gè)人應(yīng)該:活潑而守紀(jì)律,天真而不幼稚,勇敢而魯莽,倔強(qiáng)而有原則,熱情而不沖動(dòng),樂(lè)觀(guān)而不盲目。——馬克思數(shù)理統(tǒng)計(jì)的基本概念ppt課件概率與統(tǒng)計(jì)

第十八講樣本及抽樣分布安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院徐林Email:xulinahnugmail第四章數(shù)理統(tǒng)計(jì)基本概念引言總體與樣本統(tǒng)計(jì)中常用的三種分布抽樣分布數(shù)理統(tǒng)計(jì)方法的特點(diǎn)1.數(shù)理統(tǒng)計(jì)方法的歸納性質(zhì)數(shù)理統(tǒng)計(jì)是數(shù)學(xué)的一個(gè)分支,但是他們?cè)谕评矸椒ㄉ嫌袇^(qū)別的。數(shù)學(xué)的方法主要是演繹,而統(tǒng)計(jì)的方法主要是歸納。例子1抽煙有害健康問(wèn)題的證明例子2證明等腰三角形兩底角相等在幾何學(xué)和統(tǒng)計(jì)學(xué)上方法是不一樣的。數(shù)理統(tǒng)計(jì)方法的特點(diǎn).2.數(shù)理統(tǒng)計(jì)方法得到的結(jié)果具有不確定性

數(shù)理統(tǒng)計(jì)所依據(jù)的數(shù)據(jù)在采集的時(shí)候具有隨機(jī)性,雖然它也可以反映總體的特征,但是有不確定性,這是邏輯的必然。統(tǒng)計(jì)學(xué)的作用就是提供歸納推理的方法以及計(jì)算這種不確定性程度的方法。這種帶有不確定性的推斷稱(chēng)為統(tǒng)計(jì)推斷,而不確定的程度可以用概率表示4.1隨機(jī)樣本

一、總體與樣本

1.總體:研究對(duì)象的全體。通常指研究對(duì)象的某項(xiàng)數(shù)量指標(biāo)。組成總體的元素稱(chēng)為個(gè)體。從本質(zhì)上講,總體就是所研究的隨機(jī)變量或隨機(jī)變量的分布。2.樣本:來(lái)自總體的部分個(gè)體X1,…,Xn如果滿(mǎn)足:(1)同分布性:Xi,i=1,…,n與總體同分布.(2)獨(dú)立性:

X1,…,Xn相互獨(dú)立;則稱(chēng)為容量為n的簡(jiǎn)單隨機(jī)樣本,簡(jiǎn)稱(chēng)樣本。而稱(chēng)X1,…,Xn的一次實(shí)現(xiàn)為樣本觀(guān)察值,記為x1,…,xn

樣本的雙重性質(zhì)1.在具體的試驗(yàn)實(shí)施之前,其結(jié)果是未知的,只能預(yù)料其取值范圍,因此是隨機(jī)變量,因此才有樣本的統(tǒng)計(jì)分布,這樣才可以談到統(tǒng)計(jì)推斷。但是在樣本觀(guān)察之后,樣本就是具體的數(shù)字。2.對(duì)于理論工作者而言,更應(yīng)重視樣本是隨機(jī)變量這一事實(shí)。來(lái)自總體X的隨機(jī)樣本X1,…,Xn可記為顯然,樣本聯(lián)合分布函數(shù)或密度函數(shù)為或3.總體、樣本、樣本觀(guān)察值的關(guān)系總體樣本樣本觀(guān)察值?理論分布統(tǒng)計(jì)是從手中已有的資料——樣本觀(guān)察值,去推斷總體的情況——總體分布。樣本是聯(lián)系兩者的橋梁。總體分布決定了樣本取值的概率規(guī)律,也就是樣本取到樣本觀(guān)察值的規(guī)律,因而可以用樣本觀(guān)察值去推斷總體統(tǒng)計(jì)推斷1.統(tǒng)計(jì)推斷中的兩個(gè)問(wèn)題非參數(shù)統(tǒng)計(jì)推斷:不知道總體的分布類(lèi)型參數(shù)統(tǒng)計(jì)推斷:總體分布類(lèi)型已知,但是參數(shù)位置參數(shù)統(tǒng)計(jì)中的兩個(gè)主要問(wèn)題:參數(shù)估計(jì)、假設(shè)檢驗(yàn)二、統(tǒng)計(jì)量定義:稱(chēng)樣本X1,…,Xn的函數(shù)g(X1,…,Xn)是總體X的一個(gè)統(tǒng)計(jì)量,如果g(X1,…,Xn)不含未知參數(shù)幾個(gè)常用的統(tǒng)計(jì)量:

3.樣本k階矩4.經(jīng)驗(yàn)分布函數(shù)用S(x)表示樣本X1,…,Xn中不大于x得隨機(jī)變量個(gè)數(shù)。定義經(jīng)驗(yàn)分布函數(shù)Fn(x)為4.2統(tǒng)計(jì)中常用的三種分布一、2—分布

統(tǒng)計(jì)量的分布稱(chēng)為抽樣分布。數(shù)理統(tǒng)計(jì)中常用到如下三個(gè)分布:

2—分布、t—分布和F—分布。2.2—分布的密度函數(shù)f(y)曲線(xiàn)

例1:設(shè)X1,…,X10是取自N(0,0.32)的樣本,求3.分位點(diǎn)設(shè)X

~2(n),若對(duì)于:0<<1,存在滿(mǎn)足則稱(chēng)為分布的上分位點(diǎn)。P220附表34.性質(zhì):a.分布可加性若X

~2(n1),Y~2(n2),X,Y獨(dú)立,則

X

+

Y

~2(n1+n2)b.期望與方差若X~2(n),則E(X)=n,D(X)=2n1.構(gòu)造若X~N(0,1),Y~2(n),X與Y獨(dú)立,則t(n)稱(chēng)為自由度為n的t—分布。二、t—分布t(n)的概率密度為2.基本性質(zhì):(1)f(t)關(guān)于t=0(縱軸)對(duì)稱(chēng)。(2)f(t)的極限為N(0,1)的密度函數(shù),即

3.分位點(diǎn)

設(shè)T~t(n),若對(duì):0<<1,存在t(n)>0,滿(mǎn)足P{Tt(n)}=,則稱(chēng)t(n)為t(n)的上側(cè)分位點(diǎn)注:例2設(shè)是來(lái)自總體的樣本,求隨機(jī)變量的分布三、F—分布

1.構(gòu)造若U

~2(n1),V~2(n2),U,V獨(dú)立,則

稱(chēng)為第一自由度為n1,第二自由度為n2的F—分布,其概率密度為2.F—分布的分位點(diǎn)對(duì)于:0<<1,若存在F(n1,n2)>0,滿(mǎn)足P{FF(n1,n2)}=,則稱(chēng)F(n1,n2)為F(n1,n2)的上側(cè)分位點(diǎn);證明:設(shè)F~F(n1,n2),則注:得證!4.3抽樣分布證明:是n個(gè)獨(dú)立的正態(tài)隨機(jī)變量的線(xiàn)性組合,故服從正態(tài)分布(3)證明:且U與V獨(dú)立,根據(jù)t分布的構(gòu)造得證!例1:設(shè)總體X~N(10,32),X1,…,Xn是它的一個(gè)樣本 (1)寫(xiě)出Z所服從的分布;(2)求P(Z>11).例2:設(shè)X1,…,Xn是取自N(,2)的樣本,求樣本方差S2的期望與方差。END16、業(yè)余生活要有意義,不要越軌?!A盛頓

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論