版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Quasicrystals
AlCuLiQCRhombictriacontrahedralgrainTypicaldecagonalQCdiffractionpattern(TEM)1Quasicrystals
Diffractionpatternfor8-foldQCDiffractionpatternfor12-foldQC2Quasicrystals
PrincipaltypesofQCs:icosahedraldecagonal3Quasicrystals
PrincipaltypesofQCs:icosahedraldecagonalmetastable(rapid solidifcation)stable(conventional solidification)4Quasicrystals
PrincipaltypesofQCs:icosahedraldecagonalmetastable(rapid solidifcation)stable(conventional solidification)QCsusuallyhavecompositionsclosetocrystallinephases-the"crystallineapproximants"5Quasicrystals
Whilepentagons(108°angles)cannottiletofill2=Dspace,tworhombsw/72°&36°anglescan-ifmatchingrulesarefollowedN.B.-seedefinitive&comprehensivebookontilingbyGrünbaumandShepherd6Quasicrystals
Whilepentagons(108°angles)cannottiletofill2=Dspace,tworhombsw/72°&36°anglescan-ifmatchingrulesarefollowed7Quasicrystals
FouriertransformofthisPenrosetilinggivesapatternwhichexhibits5(10)-foldsymmetry–verysimilartodiffractionpatternsforicosahedralQCs8Quasicrystals
9Quasicrystals
10Quasicrystals
Diffractionpattern(inreciprocalspace)oficosahedralQCcanbeindexedw/6sixintegers-axesalong6icosahedrondirectionsqi(referredtoCartesianqx,qy,qz)1t11Quasicrystals
Diffractionpattern(inreciprocalspace)oficosahedralQCcanbeindexedw/6sixintegers-axesalong6icosahedrondirectionsqi(referredtoCartesianqx,qy,qz)q1
=(1t0)q2
=(t01)q3
=(t01)q4
=(01t)q5
=(1t0)q6
=(0t1)1t12Quasicrystals
t=
(1+5)2
=1.618…Diffractionpattern(inreciprocalspace)oficosahedralQCcanbeindexedw/6sixintegers-axesalong6icosahedrondirectionsqi(referredtoCartesianqx,qy,qz)
q1
=(1t0)q2
=(t01)q3
=(t01)q4
=(01t)q5
=(1t0)q6
=(0t1)1t13Quasicrystals
Diffractionpattern(inreciprocalspace)oficosahedralQCcanbeindexedw/6sixintegers-axesalong6icosahedrondirectionsqi(referredtoCartesianqx,qy,qz) q1
=(1t0)q2
=(t01)q3
=(t01)q4
=(01t)q5
=(1t0)q6
=(0t1)Thus,icosahedralQCisperiodicin6D14Quasicrystals
Alsoconsider:toperiodicallytilein2-D–needthreetranslationvectorsif5-fold,reasonablecellispentagon–needadditionaldimensiontofillspace(tile)–moretranslationvectors15Quasicrystals
Diffractionpattern(inreciprocalspace)oficosahedralQCcanbeindexedw/6sixintegers-axesalong6icosahedrondirectionsqi(referredtoCartesianqx,qy,qz)q1
=(1t0)q2
=(t01)q3
=(01t)q4
=(1t0)q5
=(t01)q6
=(01t)Thus,icosahedralQCisperiodicin6DButnotin3DTounderstandthis,considerperiodic2Dcrystal:16Quasicrystals
Tounderstandthis,considerperiodic2Dcrystal:The2Dcrystalisnotinourobservableworld-whatISseenisthecutalongEButcutalongEmayormaynotpassthroughlatticenodesCutshownhasslope1/t-doesnotpassthroughlatticenodesexceptorigin17Quasicrystals
Tounderstandthis,considerperiodic2Dcrystal:Butcanobservebothrealstructureanddiffractionpatternforthis1DquasiperiodiccrystalMustbesomekindofstructureintheextendedspace(the2nddimension)-shownhereaslinesthroughthe2Dlatticenodes18Quasicrystals
Tounderstandthis,considerperiodic2Dcrystal:Mustbesomekindofstructureintheextendedspace(the2nddimension)-shownhereaslinesthroughthe2DlatticenodesSomeofthelinesintersect"therealworld"cutE,therebyallowingobservationoftherealquasiperiodicstructure19Quasicrystals
Tounderstandthis,considerperiodic2Dcrystal:Noteshort&longsegmentsinrealrealworldcut-form"Fibonaccisequence":slsllslsllsllslsllslsllsllslsllsl…….. ifs=1,l=t
20Quasicrystals
Tounderstandthis,considerperiodic2Dcrystal:Thinkof2spaces-"parallel"(real)&"perp"(extended)21Quasicrystals
Considerincommensuratecrystals:Needadditionaldimensiontocompletelydescribestructure22Quasicrystals
Considerincommensuratecrystals:Similartoquasiperiodiccase23Quasicrystals
Thereare16spacegroupsforthe6-Dpointgroup532w/P,I,F6-dcubiclatticesThe6-Dstructure&theparallel&perpendicularsubspacesareallinvariantundertheoperationsof53224Quasicrystals
Thereare16spacegroupsforthe6-Dpointgroup532w/P,I,F6-dcubiclatticesThe6-Dstructure&theparallel&perpendicularsubspacesareallinvariantundertheoperationsof532Tovisualize6-Dstructure,mustmake2-Dcutswhichnecessarilymustshowbothparallel&perpspaces25Quasicrystals
Thereare16spacegroupsforthe6-Dpointgroup532w/P,I,F6-dcubiclatticesThe6-D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飼料銷售員財務(wù)制度
- 醫(yī)保慢病門診財務(wù)制度
- 破產(chǎn)期間財務(wù)制度
- 運營財務(wù)制度
- 單位辦公財務(wù)制度
- 關(guān)于商標法第五次修訂中說明商標使用情況的制度
- 公司項目內(nèi)審制度
- 地基施工方案實例(3篇)
- 助力大橋施工方案(3篇)
- 公司活動策劃方案心得(3篇)
- 對外話語體系構(gòu)建的敘事話語建構(gòu)課題申報書
- 江蘇交控集團招聘筆試題
- 2026屆浙江省寧波市九校數(shù)學(xué)高一上期末監(jiān)測試題含解析
- 馬年猜猜樂(馬的成語)打印版
- 2025-2030中國低壓變頻器行業(yè)營銷渠道及投融資方式分析研究報告
- 2025山東恒豐銀行濟南分行社會招聘1人筆試歷年典型考題及考點剖析附帶答案詳解
- 渠道管理制度規(guī)范
- 2025年企業(yè)安全生產(chǎn)培訓(xùn)講義
- GB/T 714-2025橋梁用結(jié)構(gòu)鋼
- 心臟瓣膜置換術(shù)護理查房
- 公司收貨確認函
評論
0/150
提交評論