版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第第頁七年級數(shù)學上冊湘教版第2章代數(shù)式培優(yōu)卷(含解析)第2章代數(shù)式(單元測試·培優(yōu)卷)
一、單選題(本大題共10小題,每小題3分,共30分)
1.下列各式中,符合代數(shù)式書寫規(guī)則的是()
A.B.C.D.
2.下列語句中正確的是()
A.數(shù)字0不是單項式B.單項式的系數(shù)與次數(shù)都是1
C.是二次單項式D.的系數(shù)是
3.下列計算錯誤的是()
A.B.
C.D.
4.若與是同類項,則下列關系式成立的是().
A.B.C.D.
5.某超市迎端午舉辦促銷活動,促銷的方法是全場打8折,折后價每滿100元可直接減5元.某顧客購買標價總和為x元()的商品,則該顧客實際付賬是()
A.B.C.D.
6.已知多項式,.小希在計算時把題目條件錯看成了,求得的結果為,那么小希最終計算的中不含的項為()
A.五次項B.三次項C.二次項D.常數(shù)項
7.如圖,從標有單項式的四張卡片中找出所有能合并的同類項,若它們合并后的結果為,則代數(shù)式的值為()
A.B.0C.1D.2
8.如圖①是一張長方形餐桌,四周可坐6人,2張這樣的桌子按圖②方式拼接,四周可坐10人.現(xiàn)將若干張這樣的餐桌按圖③方式拼接起來:
n張餐桌按上面的方式拼接,四周可坐()人.
A.3n+2B.4n+2C.5n+2D.6n+2
9.對于4個整式:,,,,有以下幾個結論:
①對于取任意數(shù),都有;
②若為正數(shù),則的值一定是正數(shù);
③若多項式(為常數(shù))不含,則的值為.上述結論中,正確的有()
A.①B.①②C.②③D.①③
10.賈憲三角最初于11世紀被發(fā)現(xiàn),在我國北宋時期數(shù)學家賈憲的《黃帝九章算法細草》一書中,原名為“開方作法本源圖”.我國南宋時期數(shù)學家楊輝于1261年寫下的《詳解九章算法》中有所記載.下面是根據(jù)賈憲和楊輝三角簡寫的與我們現(xiàn)在的學習聯(lián)系最緊密的二項式乘方展開圖的系數(shù)規(guī)律,根據(jù)下面的系數(shù)規(guī)律可知,多項式展開式中第三項的系數(shù)為()
A.B.C.D.
二、填空題(本大題共8小題,每小題4分,共32分)
11.單項式的系數(shù)是,多項式的次數(shù)是.
12.代數(shù)式的值為2,則.
13.某市為鼓勵市民節(jié)約用水,做出如下規(guī)定:用水量不超過10噸,每噸2元;超過10噸的部分收費4元/噸.若用水a噸應交水費元.(填最簡結果)
14.觀察下列三種原子結構示意圖,它們的核外電子總數(shù)分別為8,14,17,最外層電子數(shù)分別為6,4,7,若鈣原子核外電子總數(shù)為20,則其最外層電子數(shù)為.
15.有理數(shù)組
第1組第2組第3組第4組第5組…
…
按照此規(guī)律第9組的兩數(shù)之和為.
16.在如圖所示的五個方格中的字母都表示數(shù)字,中間一行的三個數(shù)字從左到右組成的三位數(shù)恰好可以表示為,中間一列三個數(shù)字從上到下組成的三位數(shù)恰好可以表示為(m、都是正整數(shù)),則.
17.我們把一列代數(shù)式的第一個記作,第二個記作,第三個記作,…,第n個記作,規(guī)定:.已知一列代數(shù)式…,對于任意的實數(shù)x,的最大值為.
18.閱讀材料:如果欲求的值,可以按照如下步驟進行:
令①
等式兩邊同時乘以2,得
②
由②式減去①式,得
參考以上解答過程可得,,其中m為正整數(shù).(結果請用含m的代數(shù)式表達)
三、解答題(本大題共6小題,共58分)
19.(8分)計算:
(1);(2).
20.(8分)先化簡,再求值,其中,.
21.(10分)已知,.
(1)用x,y表示代數(shù):;
(2)如果,當,時,求多項式C的值.
22.(10分)老師寫出一個整式(其中、為常數(shù),且表示為系數(shù)),然后讓同學給、賦予不同的數(shù)值進行計算.
(1)甲同學給出了一組數(shù)據(jù),最后計算的結果為.則甲同學給出、的值分別是________,________;(請直接寫出、的值)
(2)乙同學給出了,,請按照乙同學給出的數(shù)值化簡整式
(3)丙同學給出了、的一組數(shù),使計算的最后結果與的取值無關,則丙同學給出、的值分別是________,________;(請直接寫出、的值)
23.(10分)綜合與探究
【閱讀理解】“整體思想”是一種重要的數(shù)學思想方法,在多項式的化簡求值中應用極為廣泛.
比如,,類似地,我們把看成一個整體,則.
【嘗試應用】根據(jù)閱讀內容,運用“整體思想”,解答下列問題:
(1)化簡的結果是______.
(2)化簡求值,,其中.
【拓展探索】
(3)若,請求出的值.
24.(12分)(1)觀察下列單項式:,,,,,…,寫出第個單項式.
請認真閱讀下面的解題思路
請注意:①——④小題不需作答:
①這組單項式中不變的是什么?直接寫下來;②這組單項式中系數(shù)的符號規(guī)律是什么?
③這組單項式中系數(shù)的絕對值規(guī)律是什么?④這組單項式的次數(shù)的規(guī)律是什么?
探究:
⑤根據(jù)上面的歸納,猜想出第個單項式是(只用一個含的式子表示,
是正整數(shù)).
⑥第個單項式是;第個單項式是.
拓展:
(2)請先觀察下面的等式:
①;②;③;④;….按上面的規(guī)律填空:第⑥個等式是;第⑨個等式是;第個等式;
(3)請你用(2)的規(guī)律計算的值.
參考答案
1.D
【分析】根據(jù)代數(shù)式書寫的規(guī)則逐項判斷即可.
【詳解】解:A.應該寫成,故此選項不符合題意;
B.應該寫成,故選項不符合題意;
C.應該寫成,故選項不符合題意;
D.是規(guī)范書寫,故選項符合題意;
故選:D.
【分析】本題考查了代數(shù)式的書寫,解題的關鍵是掌握代數(shù)式的正確書寫規(guī)則.
2.C
【分析】根據(jù)單項式系數(shù)、次數(shù)的定義求解,單項式中數(shù)字因數(shù)叫做單項式的系數(shù),所有字母的指數(shù)和叫做這個單項式的次數(shù),單獨一個數(shù)字也是單項式.
【詳解】解:A、數(shù)字0是單項式,說法不正確的,不符合題意.
B.單項式的系數(shù)是,次數(shù)是1,說法不正確,不符合題意.
C.是二次單項式,說法正確,符合題意.
D.的系數(shù)是,說法不正確,不符合題意.
故選:C.
【分析】本題考查了單項式,解題的關鍵在于掌握其定義.
3.C
【分析】根據(jù)去括號,添括號及合并同類項的法則逐項判斷.
【詳解】A.,故選項正確,不符合題意;
B.,故選項正確,不符合題意;
C.與不是同類項,不能合并,故選項錯誤,符合題意;
D.,故選項正確,不符合題意;
故選:C.
【分析】本題考查整式的加減,解題的關鍵是掌握去括號,添括號及合并同類項的法則.
4.C
【分析】根據(jù)同類項的定義:所含字母相同,并且相同字母的指數(shù)也相同,可得b=2a,c=3a,即可判斷各選項.
【詳解】解:∵和是同類項,
∴b=2a,c=3a,
A.,此選項錯誤;
B.,此選項錯誤;
C.,此選項正確;
D.,此選項錯誤;
故選:C.
【分析】本題考查了同類項,解答本題的關鍵是掌握同類項定義中的兩個“相同”:相同字母的指數(shù)相同.
5.B
【分析】根據(jù)實際付賬標價總和滿減優(yōu)惠,即可求解.
【詳解】解:
,故滿減優(yōu)惠為5元.
實際付賬為:
故選:B.
【分析】本題考查列代數(shù)式.根據(jù)滿減優(yōu)惠是列出正確代數(shù)式的關鍵.
6.C
【分析】先根據(jù)求出a、b的值,繼而得出,即可得出答案.
【詳解】解∶由題意知
,
而
∴,,
解得:,,
∴
,
∴最終計算的中不含的項為二次項,
故選∶C.
【分析】本題主要考查整式的加減,整式的加減的實質就是去括號、合并同類項.一般步驟是∶先去括號,然后合并同類項,熟練掌握整式加減的步驟是解題的關鍵.
7.C
【分析】先利用同類項定義求出的值,再代入計算即可.
【詳解】∵四張卡片中,是同類項,
∴,
∴,
故選:C.
【分析】此題考查了同類項,熟練掌握同類項定義及合并同類項法則是解題的關鍵.
8.B
【分析】結合圖形發(fā)現(xiàn):兩端坐的人數(shù)為2人,剩下每張桌子兩邊分別坐4人,依次觀察找出規(guī)律即可.
【詳解】結合圖形,發(fā)現(xiàn)每個圖形桌子兩端均坐2人,剩下一張桌子兩邊分別坐4人,則n張餐桌可以坐的人數(shù)為人.
故選B
【分析】此題考查了圖形的變化規(guī)律,注意抓住不變的量和變化的量的規(guī)律.
9.D
【分析】①化簡該式,得一常數(shù),與取值無關,故①正確;②化簡后式子中以平方形式出現(xiàn),故式子的正負與是否為正無關,故②錯誤;③若多項式無項,則化簡后該項的系數(shù)為零即可求解.
【詳解】解:①
該式的值等于定值,與的取無關;
故①正確;
②
故不論取任何值,,對式子的正負與是否為正無關,
故②錯誤;
③
若多項式不含,則,
故③正確;
綜上,正確的有①③;
故選:D.
【分析】此題考查了整式的加減運算,熟練掌握整式的加減運算法則以及整式加減運算中無關型問題是解答此題的關鍵.
10.C
【分析】由題意可求得當,,,…時,寫出多項式展開式中第三項的系數(shù)是多少,然后找規(guī)律,即可求得答案;
【詳解】解:由題意得得:
,第3項系數(shù):;
,第3項系數(shù):;
,第3項系數(shù):;
,第3項系數(shù):;
總結規(guī)律可知:多項式展開式中第三項的系數(shù)為,
【分析】本題主要考查的是數(shù)字的變化規(guī)律,找出其中的規(guī)律是解題的關鍵.
11.5
【分析】根據(jù)單項式的系數(shù)和多項式的次數(shù)的定義即可求解.
【詳解】解:單項式的系數(shù)是,多項式的次數(shù)是5,
故答案為:①,②5.
【分析】本題考查了單項式的系數(shù)和多項式的次數(shù),熟練掌握其定義是解題的關鍵.
12.4
【分析】首先把化成,然后把代入化簡后的算式計算即可.
【詳解】解:,
.
故答案為:4.
【分析】此題主要考查了代數(shù)式求值問題,求代數(shù)式的值可以直接代入計算.如果給出的代數(shù)式可以化簡,要先化簡再求值.題型簡單總結以下三種:①已知條件不化簡,所給代數(shù)式化簡;②已知條件化簡,所給代數(shù)式不化簡;③已知條件和所給代數(shù)式都要化簡.
13.
【分析】根據(jù)不超過十噸的水費+超過十噸部分的水費=應交水費,列代數(shù)式即可.
【詳解】
故答案為
【分析】本題主要考查了列代數(shù)式,理解題意是解題的關鍵,注意:當代數(shù)式是多項式且后邊帶有單位時,代數(shù)式要加括號.
14.2
【分析】通過觀察發(fā)現(xiàn):原子結構示意圖中,由內向外看:第一層電子不超過2個,其他層電子不超過8個,據(jù)此即可解答.
【詳解】解:由三種原子結構示意圖可知:鈣原子核外電子排布為:第一層2個,第二層8個,第三層8個,第四層2個.
故答案為2.
【分析】本題主要考查了數(shù)字規(guī)律,根據(jù)三種原子結構示意圖總結原子分布規(guī)律是解答本題的關鍵.
15.
【分析】由條件歸納可得:每一組的第一個數(shù)構成連續(xù)的正整數(shù),第二個數(shù)奇次項為負數(shù),偶次項為正數(shù),其絕對值是第一個的數(shù)的平方,從而可得答案.
【詳解】解:由條件歸納可得:
每一組的第一個數(shù)構成連續(xù)的正整數(shù),
第二個數(shù)奇次項為負數(shù),偶次項為正數(shù),其絕對值是第一個的數(shù)的平方,
所以第9組數(shù)為,
所以,
故答案為:
【分析】本題考查的是數(shù)字類的規(guī)律探究,掌握探究的方法,并靈活運用規(guī)律解題是關鍵.
16.13
【分析】由于三位數(shù)恰好可以表示為,可知或8或9,三位數(shù)恰好可以表示為,可知或6,再由十位上的數(shù)字相同即可求解.
【詳解】解:三位數(shù)恰好可以表示為,
或8或9,
當時,,
當時,,
當時,;
三位數(shù)恰好可以表示為,
或6,
當時,,
當時,;
中間的數(shù)字相同,
,,
.
故答案為:13.
【分析】本題主要考查有理數(shù)的乘方運算及代數(shù)式的值,熟練掌握有理數(shù)的乘方運算是解題的關鍵.
17.16
【分析】先根據(jù)整式加減求得,然后再根據(jù)偶次冪的非負性即可解答.
【詳解】解:
所以的最大值為16.
故答案為16.
【分析】本題主要考查了偶次冪的非負性、整式的加減等知識點,正確求得的代數(shù)式是解答本題的關鍵.
18.
【分析】模仿例題解決問題即可.
【詳解】解:設①
∴②,
①②得到,,
∴.
故答案為:.
【分析】此題考查了規(guī)律型:數(shù)字的變化類,以及有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關鍵.
19.(1)
(2)
【分析】(1)先去括號,再合并同類項即可;
(2)先去括號,再合并同類項即可.
【詳解】(1)解:原式
;
(2)解:原式
.
【分析】本題考查整式的加減,解答本題的關鍵是明確去括號法則和合并同類項的方法.
20.,
【分析】去括號,合并同類項把所求式子化簡,再將,的值代入計算即可.
【詳解】原式
,
當,時,原式.
【分析】本題考查整式化簡求值,解題的關鍵是掌握去括號,合并同類項法則,把所求式子化簡.
21.(1)
(2)
【分析】(1)去括號,合并同類項進行計算即可;
(2)先求出多項式C,再代值計算即可.
【詳解】(1)解:原式
;
(2)∵,
∴
;
當,時,
原式
.
【分析】本題考查整式的加減運算.熟練掌握去括號,合并同類項法則,正確的計算,是解題的關鍵.
22.(1);;
(2);
(3),;
【分析】(1)先合并同類項可得,,從而可得答案;
(2)把,,代入,從而可得答案;
(3)由的值與的取值無關,可得,,從而可得答案.
【詳解】(1)解:
;
∴,,
解得:,;
故答案為:;
(2)當,時,
;
(3)
而與的取值無關,
∴,,
解得:,.
故答案為:.
【分析】本題考查的是整式的加減運算,多項式的值與某字母的值無關,理解題意,正確的合并同類項是解本題的關鍵.
23.(1);(2),2;(3)
【分析】(1)把看作一個整體,利用合并同類項的運算法則進行化簡;
(2)分別將和看作一個整體,利用合并同類項的運算法則進行化簡,然后利用整體思想代入求值;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年叉車貨叉調整與使用試題含答案
- 九年級政治《活動題考試方向與答題技巧》教學設計
- 2025 小學四年級思想品德上冊環(huán)保主題班會設計課件
- 遼寧中部城市群經濟區(qū)發(fā)展總體規(guī)劃介紹模板
- 達州市集體林權制度改革實施方案發(fā)展與協(xié)調
- 2026年劇本殺運營公司應收賬款管理制度
- 2026年劇本殺運營公司特殊需求顧客服務規(guī)范管理制度
- 2026年環(huán)保科技可持續(xù)創(chuàng)新報告
- 貴州省銅仁市2025-2026學年八年級上學期1月期末質量監(jiān)測道德與法治試題(含答案)
- 2025年家居行業(yè)智能家居創(chuàng)新報告
- 2026廣東省環(huán)境科學研究院招聘專業(yè)技術人員16人筆試參考題庫及答案解析
- 邊坡支護安全監(jiān)理實施細則范文(3篇)
- 6.1.3化學反應速率與反應限度(第3課時 化學反應的限度) 課件 高中化學新蘇教版必修第二冊(2022-2023學年)
- 北京市西城區(qū)第8中學2026屆生物高二上期末學業(yè)質量監(jiān)測模擬試題含解析
- 2026年遼寧輕工職業(yè)學院單招綜合素質考試參考題庫帶答案解析
- 2026屆北京市清華大學附中數(shù)學高二上期末調研模擬試題含解析
- 醫(yī)院實習生安全培訓課課件
- 四川省成都市武侯區(qū)西川中學2024-2025學年八上期末數(shù)學試卷(解析版)
- 2026年《必背60題》抖音本地生活BD經理高頻面試題包含詳細解答
- 《成人患者醫(yī)用粘膠相關性皮膚損傷的預防及護理》團體標準解讀2026
- 2025年人保保險業(yè)車險查勘定損人員崗位技能考試題及答案
評論
0/150
提交評論