黃山市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
黃山市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
黃山市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
黃山市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
黃山市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黃山市重點中學(xué)2024屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為,,對任意,,則的解集為()A. B.C. D.2.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則A.2 B.3C. D.43.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直4.已知向量,,若與共線,則實數(shù)值為()A. B.C.1 D.25.已知等差數(shù)列,且,則()A.3 B.5C.7 D.96.已知點是雙曲線的左焦點,定點,是雙曲線右支上動點,則的最小值為().A.7 B.8C.9 D.107.已知點,則直線的傾斜角為()A. B.C. D.8.橢圓焦距為()A. B.8C.4 D.9.已知為圓:上任意一點,則的最小值為()A. B.C. D.10.設(shè)為等差數(shù)列的前項和,,,則A.-6 B.-4C.-2 D.211.已知點,動點P滿足,則點P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓12.函數(shù),若實數(shù)是函數(shù)的零點,且,則()A. B.C. D.無法確定二、填空題:本題共4小題,每小題5分,共20分。13.已知圓錐的母線長為cm,其側(cè)面展開圖是一個半圓,則底面圓的半徑為____cm.14.已知雙曲線的兩條漸近線的夾角為,則雙曲線的實軸長為____15.若函數(shù)恰有兩個極值點,則k的取值范圍是______16.在不等邊△ABC(三邊均不相等)中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,且有,則角C的大小為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心為,且圓經(jīng)過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)取值范圍18.(12分)已知函數(shù).(1)當時,求的極值;(2)當時,,求a的取值范圍.19.(12分)已知圓:,點A是圓上一動點,點,點是線段的中點.(1)求點的軌跡方程;(2)直線過點且與點的軌跡交于A,兩點,若,求直線的方程.20.(12分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當為何值時,最大,并求的最大值.21.(12分)已知為坐標原點,圓的圓心在軸上,點、均在圓上.(1)求圓的標準方程;(2)若直線與橢圓交于兩個不同的點、,點在圓上,求面積的最大值.22.(10分)已知函數(shù).(1)當時,求的單調(diào)區(qū)間與極值;(2)若在上有解,求實數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)在上的單調(diào)性,將不等式轉(zhuǎn)化為,利用函數(shù)的單調(diào)性即可求解.【詳解】依題意可設(shè),所以.所以函數(shù)在上單調(diào)遞增,又因為.所以要使,即,只需要,故選B.【點睛】本題考查利用函數(shù)的單調(diào)性解不等式,解題的關(guān)鍵就是利用導(dǎo)數(shù)不等式的結(jié)構(gòu)構(gòu)造新函數(shù)來解,考查分析問題和解決問題的能力,屬于中等題.2、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點,∴,故選D.3、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.4、D【解析】根據(jù)空間向量共線有,,結(jié)合向量的坐標即可求的值.【詳解】由題設(shè),有,,則,可得.故選:D5、B【解析】根據(jù)等差數(shù)列的性質(zhì)求得正確答案.【詳解】由于數(shù)列是等差數(shù)列,所以.故選:B6、C【解析】設(shè)雙曲線的右焦點為M,作出圖形,根據(jù)雙曲線的定義可得,可得出,利用A、P、M三點共線時取得最小值即可得解.【詳解】∵是雙曲線的左焦點,∴,,,,設(shè)雙曲線的右焦點為M,則,由雙曲線的定義可得,則,所以,當且僅當A、P、M三點共線時,等號成立,因此,的最小值為9.故選:C.【點睛】關(guān)鍵點點睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關(guān)的線段長度和、差的最值,都可以通過相應(yīng)的圓錐曲線的定義分析問題;(2)圓外一點到圓上的點的距離的最值,可通過連接圓外的點與圓心來分析求解.7、A【解析】由兩點坐標,求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設(shè)直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A8、A【解析】由題意橢圓的焦點在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點在軸上故焦距故選:A9、C【解析】設(shè),則的幾何意義為圓上的點和定點連線的斜率,利用直線和圓相切,即可求出的最小值;【詳解】圓,它圓心是,半徑為1,設(shè),則,即,當直線和圓相切時,有,可得,,的最小值為:,故選:10、A【解析】由已知得解得故選A考點:等差數(shù)列的通項公式和前項和公式11、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.12、A【解析】利用函數(shù)在遞減求解.【詳解】因為函數(shù)在遞減,又實數(shù)是函數(shù)的零點,即,又因為,所以,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可知圓錐側(cè)面展開圖的半圓的半徑為cm,再根據(jù)底面圓的周長等于側(cè)面的弧長,即可求出結(jié)果.【詳解】設(shè)底面圓的半徑為,由于側(cè)面展開圖是一個半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.14、【解析】根據(jù)已知條件求得,由此求得實軸長.【詳解】由于,雙曲線的漸近線方程為,所以雙曲線的漸近線與軸夾角小于,由得,實軸長故答案為:15、【解析】求導(dǎo)得有兩個極值點等價于函數(shù)有一個不等于1的零點,分離參數(shù)得,令,利用導(dǎo)數(shù)研究的單調(diào)性并作出的圖象,根據(jù)圖象即可得出k的取值范圍【詳解】函數(shù)的定義域為,,令,解得或,若函數(shù)有2個極值點,則函數(shù)與圖象在上恰有1個橫坐標不為1的交點,而,令,令或,故在和上單調(diào)遞減,在上單調(diào)遞增,又,如圖所示,由圖可得.故答案為:16、【解析】由正弦定理可得,又,,,,,在三角形中,.考點:1正弦定理;2正弦的二倍角公式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標準方程是:.【小問2詳解】圓:圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實數(shù)的取值范圍是.18、(1)極大值,沒有極小值(2)【解析】(1)把代入,然后對函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對進行分類討論,其中當和時易判斷函數(shù)的單調(diào)性以及最小值,而當時,的最小值與0進一步判斷【小問1詳解】當時,的定義域為,.當時,,當時,,所以在上為增函數(shù),在上為減函數(shù).故有極大值,沒有極小值.【小問2詳解】當時,恒成立等價于對于任意恒成立.令,則.若,則,所以在上單調(diào)遞減,所以,符合題意.若,所以在上單調(diào)遞減,,符合題意.若,當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,不合題意.綜上可知,a的取值范圍為.【點睛】關(guān)鍵點點睛:本題考查了不等式恒成立問題,其關(guān)鍵是構(gòu)造函數(shù),通過討論參數(shù)在不同取值范圍時函數(shù)的單調(diào)性,求出函數(shù)的最值,解出參數(shù)的范圍.必要時二次求導(dǎo).19、(1);(2)x=1或y=1.【解析】(1)設(shè)線段中點為,點,用x,y表示,代入方程即可;(2)分l斜率存在和不存在進行討論,根據(jù)弦長求出l方程.【小問1詳解】設(shè)線段中點為,點,,,,,,即點C的軌跡方程為.【小問2詳解】直線l的斜率不存在時,l為x=1,代入得,則弦長滿足題意;直線l斜率存在時,設(shè)直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.20、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,因為.所以,解得,所以;【小問2詳解】,當或7時,最大,的最大值是126.21、(1);(2).【解析】(1)求出圓心坐標,可求得圓的半徑,進而可得出圓的標準方程;(2)求得點到直線的距離,將直線的方程與橢圓的方程聯(lián)立,求得的表達式,利用三角形的面積公式結(jié)合基本不等式可求得結(jié)果.【小問1詳解】解:由題知,線段的中點為,直線的斜率,所以線段的中垂線為,即為,所以圓的圓心為軸與的交點,所以圓的半徑,所以圓的標準方程為.【小問2詳解】解:由題知:圓心到直線的距離,因為,所以圓心到直線的距離,所以到直線的距離,設(shè)點、,聯(lián)立可得,,,則,所以,,所以,所以,所以當且僅當,即時等號成立,所以當時,取得最大值.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值22、(1)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)有極小值,無極大值(2)【解析】(1)利用導(dǎo)數(shù)的正負判斷函數(shù)的單調(diào)性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當時,不等式變形為在,上有解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解的最小值,即可得到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論