2023-2024學(xué)年湖南瀏陽一中、株洲二中等湘東五校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第1頁
2023-2024學(xué)年湖南瀏陽一中、株洲二中等湘東五校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第2頁
2023-2024學(xué)年湖南瀏陽一中、株洲二中等湘東五校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第3頁
2023-2024學(xué)年湖南瀏陽一中、株洲二中等湘東五校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第4頁
2023-2024學(xué)年湖南瀏陽一中、株洲二中等湘東五校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年湖南瀏陽一中、株洲二中等湘東五校高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若,則△ABC是A.正三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形2.一個(gè)等腰三角形繞著底邊上的高所在的直線旋轉(zhuǎn)180度所形成的幾何體是()A.兩個(gè)共底面的圓錐 B.半圓錐 C.圓錐 D.圓柱3.已知M為z軸上一點(diǎn),且點(diǎn)M到點(diǎn)與點(diǎn)的距離相等,則點(diǎn)M的坐標(biāo)為()A. B. C. D.4.下列結(jié)論正確的是()A.若則; B.若,則C.若,則 D.若,則;5.已知圓與圓有3條公切線,則()A. B.或 C. D.或6.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.7.已知,且,,則()A. B. C. D.8.已知,,,則實(shí)數(shù)、、的大小關(guān)系是()A. B.C. D.9.已知集合,集合為整數(shù)集,則()A. B. C. D.10.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊經(jīng)過點(diǎn),則______.12.如圖,為了測量樹木的高度,在處測得樹頂?shù)难鼋菫?,在處測得樹頂?shù)难鼋菫?,若米,則樹高為______米.13.方程cosx=14.在等比數(shù)列中,,的值為______.15.如圖,在三棱錐中,它的每個(gè)面都是全等的正三角形,是棱上的動(dòng)點(diǎn),設(shè),分別記與,所成角為,,則的取值范圍為__________.16.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.現(xiàn)有8名奧運(yùn)會(huì)志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個(gè)小組.(1)求被選中的概率;(2)求和不全被選中的概率.18.已知.(1)求的值;(2)若為第二象限角,且角終邊在上,求的值.19.已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn).(Ⅰ)求證:PC∥平面EBD;(Ⅱ)求證:平面PBC⊥平面PCD.20.已知的三個(gè)內(nèi)角的對邊分別為,且,(1)求證:;(2)若是銳角三角形,求的取值范圍.21.己知角的終邊經(jīng)過點(diǎn).求的值;求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

由正弦定理,記,則,,,又,所以,即,所以.故選:A.2、C【解析】

根據(jù)旋轉(zhuǎn)體的知識(shí),結(jié)合等腰三角形的幾何特征,得出正確的選項(xiàng).【詳解】由于等腰三角形三線合一,故等腰三角形繞著底邊上的高所在的直線旋轉(zhuǎn)180度所形成的幾何體是圓錐.故選C.【點(diǎn)睛】本小題主要考查旋轉(zhuǎn)體的知識(shí),考查等腰三角形的幾何特征,屬于基礎(chǔ)題.3、C【解析】

根據(jù)題意先設(shè),再根據(jù)空間兩點(diǎn)間的距離公式,得到,再由點(diǎn)M到點(diǎn)與點(diǎn)的距離相等建立方程求解.【詳解】設(shè)根據(jù)空間兩點(diǎn)間的距離公式得因?yàn)辄c(diǎn)M到點(diǎn)與點(diǎn)的距離相等所以解得所以故選:C【點(diǎn)睛】本題主要考查了空間兩點(diǎn)間的距離公式,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、D【解析】

根據(jù)不等式的性質(zhì),結(jié)合選項(xiàng),進(jìn)行逐一判斷即可.【詳解】因,則當(dāng)時(shí),;當(dāng)時(shí),,故A錯(cuò)誤;因,則或,故B錯(cuò)誤;因,才有,條件不足,故C錯(cuò)誤;因,則,則只能是,故D正確.故選:D.【點(diǎn)睛】本題考查不等式的基本性質(zhì),需要對不等式的性質(zhì)非常熟練,屬基礎(chǔ)題.5、B【解析】

由兩圓有3條公切線,可知兩圓外切,則圓心距等于兩圓半徑之和,求解即可.【詳解】由題意,圓與圓外切,所以,即,解得或.【點(diǎn)睛】本題考查了兩圓外切的性質(zhì),考查了計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BD與CE所成的角.【詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,設(shè)AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設(shè)異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點(diǎn)評(píng)】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、C【解析】

根據(jù)同角公式求出,后,根據(jù)兩角和的正弦公式可得.【詳解】因?yàn)?,所以,因?yàn)?,所?因?yàn)?,所以,因?yàn)?,所?所以.故選:C【點(diǎn)睛】本題考查了同角公式,考查了兩角和的正弦公式,拆解是解題關(guān)鍵,屬于中檔題.8、B【解析】

將bc化簡為最簡形式,再利用單調(diào)性比較大小?!驹斀狻恳?yàn)樵趩握{(diào)遞增所以【點(diǎn)睛】本題考查利用的單調(diào)性判斷大小,屬于基礎(chǔ)題。9、A【解析】試題分析:,選A.【考點(diǎn)定位】集合的基本運(yùn)算.10、B【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意,則.12、【解析】

先計(jì)算,再計(jì)算【詳解】在處測得樹頂?shù)难鼋菫?,在處測得樹頂?shù)难鼋菫閯t在中,故答案為【點(diǎn)睛】本題考查了三角函數(shù)的應(yīng)用,也可以用正余弦定理解答.13、x|x=2kπ±【解析】

由誘導(dǎo)公式可得cosx=sinπ【詳解】因?yàn)榉匠蘡osx=sinπ所以x=2kπ±π故答案為x|x=2kπ±π【點(diǎn)睛】本題考查解三角函數(shù)的方程,余弦函數(shù)的周期性和誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

由等比中項(xiàng),結(jié)合得,化簡即可.【詳解】由等比中項(xiàng)得,得,設(shè)等比數(shù)列的公比為,化簡.故答案為:4【點(diǎn)睛】本題考查了等比中項(xiàng)的性質(zhì),通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

作交于,連接,可得是與所成的角根據(jù)等腰三角形的性質(zhì),作交于,同理可得,根據(jù),的關(guān)系即可得解.【詳解】解:作交于,連接,因?yàn)槿忮F中,它的每個(gè)面都是全等的正三角形,為正三角形,,,是與所成的角,根據(jù)等腰三角形的性質(zhì).作交于,同理可得,則,∵,∴,得.故答案為:【點(diǎn)睛】本題考查異面直線所成的角,屬于中檔題.16、【解析】

根據(jù)條件求出的表達(dá)式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項(xiàng)公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項(xiàng).所以,故答案為:【點(diǎn)睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強(qiáng),考查學(xué)生的計(jì)算能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)從8人中選出日語、俄語和韓語志愿者各1名,其一切可能的結(jié)果組成的基本事件空間{,,,,,,,,}由18個(gè)基本事件組成.由于每一個(gè)基本事件被抽取的機(jī)會(huì)均等,因此這些基本事件的發(fā)生是等可能的.用表示“恰被選中”這一事件,則{,}事件由6個(gè)基本事件組成,因而.(2)用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于{},事件有3個(gè)基本事件組成,所以,由對立事件的概率公式得.18、(1);(2)【解析】

(1)先根據(jù)誘導(dǎo)公式將原式子化簡,再將已知條件中的表達(dá)式平方,可得到結(jié)果;(2)原式子可化簡為,由已知條件可得到,再由第一問中得到,結(jié)合第一問中的條件可得到結(jié)果.【詳解】(1)=已知,將式子兩邊平方可得到(2)為第二象限角,且角終邊在上,則根據(jù)三角函數(shù)的定義得到原式化簡等于由第一問得到將已知條件均代入可得到原式等于.【點(diǎn)睛】三角函數(shù)求值與化簡必會(huì)的三種方法(1)弦切互化法:主要利用公式tanα=;形如,asin2x+bsinxcosx+ccos2x等類型可進(jìn)行弦化切.(2)“1”的靈活代換法:1=sin2θ+cos2θ=(sinθ+cosθ)2-2sinθcosθ=tan等.(3)和積轉(zhuǎn)換法:利用(sinθ±cosθ)2=1±2sinθcosθ,(sinθ+cosθ)2+(sinθ-cosθ)2=2的關(guān)系進(jìn)行變形、轉(zhuǎn)化.19、(Ⅰ)見解析(Ⅱ)見解析【解析】試題分析:(1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;

(2)證明,即可證得平面平面.試題解析:(Ⅰ)連接AC交BD與O,連接EO,∵E、O分別為PA、AC的中點(diǎn),∴EO∥PC,∵PC?平面EBD,EO?平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC,∵ABCD為正方形,∴BC⊥CD,∵PD∩CD=D,PD、CD?平面PCD∴BC⊥平面PCD,又∵BC?平面PBC,∴平面PBC⊥平面PCD.【點(diǎn)睛】本題考查線面平行,考查面面平行,掌握線面平行,面面平行的判定方法是關(guān)鍵.20、(1)證明見解析;(2)【解析】

(1)由,聯(lián)立,得,然后邊角轉(zhuǎn)化,利用和差公式化簡,即可得到本題答案;(2)利用正弦定理和,得,再確定角C的范圍,即可得到本題答案.【詳解】解:(1)銳角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論