信陽市重點中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第1頁
信陽市重點中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第2頁
信陽市重點中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第3頁
信陽市重點中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第4頁
信陽市重點中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

信陽市重點中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應等乙半小時,而乙還有其他安排,若他早到則不需等待,則甲、乙兩人能見面的概率()A. B. C. D.2.某賽季甲、乙兩名籃球運動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則下列結論錯誤的是()A.B.甲得分的方差是736C.乙得分的中位數(shù)和眾數(shù)都為26D.乙得分的方差小于甲得分的方差3.已知等差數(shù)列的公差,若的前項之和大于前項之和,則()A. B. C. D.4.某次運動會甲、乙兩名射擊運動員成績如右圖所示,甲、乙的平均數(shù)分別為為、,方差分別為,,則()A. B.C. D.5.在數(shù)列中,若,,則()A. B. C. D.6.在正方體中,分別是線段的中點,則下列判斷錯誤的是()A.與垂直 B.與垂直C.與平行 D.與平行7.已知正數(shù)、滿足,則的最小值為()A. B. C. D.8.已知,,,,那么()A. B. C. D.9.設,且,則()A. B. C. D.10.若實數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在空間直角坐標系中,點關于原點的對稱點的坐標為______.12.對于下列數(shù)排成的數(shù)陣:它的第10行所有數(shù)的和為________13.已知等邊三角形的邊長為2,點P在邊上,點Q在邊的延長線上,若,則的最小值為______.14.已知是奇函數(shù),且,則_______.15.已知角的終邊經過點,則的值為__________.16.的內角的對邊分別為.若,則的面積為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.己知向量,,設函數(shù),且的圖象過點和點.(1)當時,求函數(shù)的最大值和最小值及相應的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.18.已知.(1)求的值;(2)求的值.19.在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;(2)設直線與圓交于不同的兩點、,且,求圓的方程;(3)設直線與(2)中所求圓交于點、,為直線上的動點,直線、與圓的另一個交點分別為、,求證:直線過定點.20.如圖所示,在四棱錐P-ABCD中,,,,平面底面ABCD,E和F分別是CD和PC的中點.求證:(1)平面BEF;(2)平面平面PCD.21.已知向量是夾角為的單位向量,,(1)求;(2)當m為何值時,與平行?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】設甲到達時刻為,乙到達時刻為,依題意列不等式組為,畫出可行域如下圖陰影部分,故概率為.2、B【解析】

根據(jù)題意,依次分析選項,綜合即可得答案.【詳解】根據(jù)題意,依次分析選項:對于A,甲得分的極差為32,30+x﹣6=32,解得:x=8,A正確,對于B,甲得分的平均值為,其方差為,B錯誤;對于C,乙的數(shù)據(jù)為:12、25、26、26、31,其中位數(shù)、眾數(shù)都是26,C正確,對于D,乙得分比較集中,則乙得分的方差小于甲得分的方差,D正確;故選:B.【點睛】本題考查莖葉圖的應用,涉及數(shù)據(jù)極差、平均數(shù)、中位數(shù)、眾數(shù)、方差的計算,屬于基礎題.3、C【解析】

設等差數(shù)列的前項和為,由并結合等差數(shù)列的下標和性質可得出正確選項.【詳解】設等差數(shù)列的前項和為,由,得,可得,故選:C.【點睛】本題考查等差數(shù)列性質的應用,解題時要充分利用等差數(shù)列下標和與等差中項的性質,可以簡化計算,考查分析問題和解決問題的能力,屬于中等題.4、C【解析】試題分析:,;,,故選C.考點:莖葉圖.【易錯點晴】本題考查學生的是由莖葉圖中的數(shù)據(jù)求平均數(shù)和方差,屬于中檔題目.由莖葉圖觀察數(shù)據(jù),用莖表示成績的整數(shù)環(huán)數(shù),葉表示小數(shù)點后的數(shù)字,利用平均值公式及標準差公式求出兩個樣本的平均數(shù)和方差,一般平均數(shù)反映的是一組數(shù)據(jù)的平均水平,平均數(shù)越大,則該名運動員的平均成績越高;方差式用來描述一組數(shù)據(jù)的波動大小的指標,方差越小,說明數(shù)據(jù)波動越小,即該名運動員的成績越穩(wěn)定.5、C【解析】

利用倒數(shù)法構造等差數(shù)列,求解通項公式后即可求解某一項的值.【詳解】∵,∴,即,數(shù)列是首項為,公差為2的等差數(shù)列,∴,即,∴.故選C.【點睛】對于形如,可將其轉化為的等差數(shù)列形式,然后根據(jù)等差數(shù)列去計算.6、D【解析】

利用數(shù)形結合,逐一判斷,可得結果.【詳解】如圖由分別是線段的中點所以//A選項正確,因為,所以B選項正確,由,所以C選項正確D選項錯誤,由//,而與相交,所以可知,異面故選:D【點睛】本題主要考查空間中直線與直線的位置關系,屬基礎題.7、B【解析】

由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值.【詳解】,所以,,則,所以,,當且僅當,即當時,等號成立,因此,的最小值為,故選.【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關鍵,屬于中等題.8、C【解析】由于故,故,所以.由于,由于,所以,故.綜上所述選.9、B【解析】

利用兩角和差正切公式可求得;根據(jù)范圍可求得;利用兩角和差公式計算出;利用兩角和差余弦公式計算出結果.【詳解】,又本題正確選項:【點睛】本題考查利用三角恒等變換中的兩角和差的正余弦和正切公式求解三角函數(shù)值的問題,涉及到同角三角函數(shù)關系的應用;關鍵是能夠熟練應用兩角和差公式進行配湊,求得所需的三角函數(shù)值.10、D【解析】

根據(jù)題意,由不等式的性質依次分析選項,綜合即可得答案.【詳解】根據(jù)題意,依次分析選項:對于A、,時,有成立,故A錯誤;對于B、,時,有成立,故B錯誤;對于C、,時,有成立,故C錯誤;對于D、由不等式的性質分析可得若,必有成立,則D正確;故選:D.【點睛】本題考查不等式的性質,對于錯誤的結論舉出反例即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用空間直角坐標系中,關于原點對稱的點的坐標特征解答即可.【詳解】在空間直角坐標系中,關于原點對稱的點的坐標對應互為相反數(shù),所以點關于原點的對稱點的坐標為.故答案為:【點睛】本題主要考查空間直角坐標系中對稱點的特點,意在考查學生對該知識的理解掌握水平,屬于基礎題.12、【解析】

由題意得第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,再根據(jù)奇數(shù)為負數(shù),偶數(shù)為正數(shù),得到第10行的各個數(shù),由此能求出第10行所有數(shù)的和.【詳解】第1行1個數(shù),第2行2個數(shù),則第9行9個數(shù),故第10行的第一個數(shù)的絕對值為,第10行的最后一個數(shù)的絕對值為,且奇數(shù)為負數(shù),偶數(shù)為正數(shù),故第10行所有數(shù)的和為,故答案為:.【點睛】本題以數(shù)陣為背景,觀察數(shù)列中項的特點,求數(shù)列通項和前項和,考查邏輯推理能力和運算求解能力,求解時要注意等差數(shù)列性質的合理運用.13、【解析】

以為軸建立平面直角坐標系,設,用t表示,求其最小值即可得到本題答案.【詳解】過點A作BC的垂線,垂足為O,以為軸建立平面直角坐標系.作PM垂直BC交于點M,QH垂直y軸交于點H,CN垂直HQ交于點N.設,則,故有所以,,當時,取最小值.故答案為:【點睛】本題主要考查利用建立平面直角坐標系解決向量的取值范圍問題.14、【解析】

根據(jù)奇偶性定義可知,利用可求得,從而得到;利用可求得結果.【詳解】為奇函數(shù)又即,解得:本題正確結果:【點睛】本題考查根據(jù)函數(shù)的奇偶性求解函數(shù)值的問題,屬于基礎題.15、【解析】按三角函數(shù)的定義,有.16、【解析】

本題首先應用余弦定理,建立關于的方程,應用的關系、三角形面積公式計算求解,本題屬于常見題目,難度不大,注重了基礎知識、基本方法、數(shù)學式子的變形及運算求解能力的考查.【詳解】由余弦定理得,所以,即解得(舍去)所以,【點睛】本題涉及正數(shù)開平方運算,易錯點往往是余弦定理應用有誤或是開方導致錯誤.解答此類問題,關鍵是在明確方法的基礎上,準確記憶公式,細心計算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最大值為2,此時;最小值為-1,此時.(2)【解析】

(1)根據(jù)向量數(shù)量積坐標公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點,求解函數(shù)解析式,當時,解出的范圍,根據(jù)三角函數(shù)性質,可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點和,得到,解得,.當時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得令,,如圖當時,在有兩個不同的解∴,即.【點睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計算能力,考查轉化與化歸思想,考查數(shù)形結合思想,屬于中等題型.18、(1);(2).【解析】試題分析:(1)要求的值,根據(jù)兩角和的正弦公式,可知還要求得,由于已知,所以,利用同角關系可得;(2)要求,由兩角差的余弦公式我們知要先求得,而這由二倍角公式結合(1)可很容易得到.本題應該是三角函數(shù)最基本的題型,只要應用公式,不需要作三角函數(shù)問題中常見的“角”的變換,“函數(shù)名稱”的變換等技巧,可以算得上是容易題,當然要正確地解題,也必須牢記公式,及計算正確.試題解析:(1)由題意,所以.(2)由(1)得,,所以.【考點】三角函數(shù)的基本關系式,二倍角公式,兩角和與差的正弦、余弦公式.19、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)由題意設圓心坐標為,可得半徑為,求出圓的方程,分別令、,可得出點、的坐標,利用三角形的面積公式即可證明出結論成立;(2)由,知,利用兩直線垂直的等價條件:斜率之積為,解方程可得,討論的取值,求得圓心到直線的距離,即可得到所求圓的方程;(3)設,、,求得、的坐標,以及直線、的方程,聯(lián)立圓的方程,利用韋達定理,結合,得出,設直線的方程為,代入圓的方程,利用韋達定理,可得、之間的關系,即可得出所求的定點.【詳解】(1)由題意可設圓心為,則圓的半徑為,則圓的方程為,即.令,得,得;令,得,得.(定值);(2)由,知,所以,解得.當時,圓心到直線的距離小于半徑,符合題意;當時,圓心到直線的距離大于半徑,不符合題意.所以,所求圓的方程為;(3)設,,,又知,,所以,.因為,所以.將,代入上式,整理得.①設直線的方程為,代入,整理得.所以,.代入①式,并整理得,即,解得或.當時,直線的方程為,過定點;當時,直線的方程為,過定點檢驗定點和、共線,不合題意,舍去.故過定點.【點睛】本題考查圓的方程的求法和運用,注意運用聯(lián)立直線方程和圓的方程,消去一個未知數(shù),運用韋達定理,考查直線恒過定點的求法,考查運算能力,屬于難題.20、(2)證明見解析(2)證明見解析【解析】

(1)連接,交于,結合平行四邊形的性質可得,再由線面平行的判定定理,即可得證(2)運用面面垂直的性質定理可得平面,推得,,,再由線面垂直的判定定理和嗎垂直的判定定理,即可得證.【詳解】證明:(1)連接,交于,可得四邊形為平行四邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論