版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧沈陽市郊聯(lián)體2025屆數(shù)學高一下期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知隨機事件中,與互斥,與對立,且,則()A.0.3 B.0.6 C.0.7 D.0.92.中國古代數(shù)學著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.3.設(shè)在中,角所對的邊分別為,若,則的形狀為()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定4.圓的半徑是,則的圓心角與圓弧圍成的扇形面積是()A. B. C. D.5.設(shè)集合,則()A. B. C. D.6.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分則可中獎,小明要想增加中獎機會,應(yīng)選擇的游戲盤是A. B. C. D.7.已知函數(shù)f(x)是定義在上的奇函數(shù),當x>0時,f(x)=2x-3,則A.14B.-114C.8.將函數(shù)的圖像上的所有點向右平移個單位長度,得到函數(shù)的圖像,若的部分圖像如圖所示,則函數(shù)的解析式為A. B.C. D.9.已知平面向量,,且,則實數(shù)的值為()A. B. C. D.10.設(shè)等比數(shù)列的前項和為,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知斜率為的直線的傾斜角為,則________.12.若數(shù)列滿足(),且,,__.13.設(shè)函數(shù),則的值為__________.14.中醫(yī)藥是反映中華民族對生命、健康和疾病的認識,具有悠久歷史傳統(tǒng)和獨特理論及技術(shù)方法的醫(yī)藥學體系,是中華文明的瑰寶.某科研機構(gòu)研究發(fā)現(xiàn),某品種中成藥的藥物成份的含量(單位:)與藥物功效(單位:藥物單位)之間具有關(guān)系:.檢測這種藥品一個批次的5個樣本,得到成份的平均值為,標準差為,估計這批中成藥的藥物功效的平均值為__________藥物單位.15.若三角形ABC的三個角A,B,C成等差數(shù)列,a,b,c分別為角A,B,C的對邊,三角形ABC的面積,則b的最小值是________.16.如果是奇函數(shù),則=.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(,,)的部分圖象如圖所示,其中點是圖象的一個最高點.(Ⅰ)求函數(shù)的解析式;(Ⅱ)已知且,求.18.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求點到平面的距離.19.已知圓經(jīng)過點,且圓心在直線:上.(1)求圓的方程;(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.20.如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)遠處一山頂D在西偏北的方向上,仰角為,行駛4km后到達B處,測得此山頂在西偏北的方向上.(1)求此山的高度(單位:km);(2)設(shè)汽車行駛過程中仰望山頂D的最大仰角為,求.21.已知的三個頂點分別為,,,求:(1)邊上的高所在直線的方程;(2)的外接圓的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由對立事件概率關(guān)系得到B發(fā)生的概率,再由互斥事件的概率計算公式求P(A+B).【詳解】因為,事件B與C對立,所以,又,A與B互斥,所以,故選C.【點睛】本題考查互斥事件的概率,能利用對立事件概率之和為1進行計算,屬于基本題.2、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.3、B【解析】
利用正弦定理可得,結(jié)合三角形內(nèi)角和定理與誘導公式可得,從而可得結(jié)果.【詳解】因為,所以由正弦定理可得,,所以,所以是直角三角形.【點睛】本題主要考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.弦定理是解三角形的有力工具,其常見用法有以下幾種:(1)知道兩邊和一邊的對角,求另一邊的對角(一定要注意討論鈍角與銳角);(2)知道兩角與一個角的對邊,求另一個角的對邊;(3)證明化簡過程中邊角互化;(4)求三角形外接圓半徑.4、C【解析】
先將化為弧度數(shù),再利用扇形面積計算公式即可得出.【詳解】所以扇形的面積為:故選:C【點睛】題考查了扇形面積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.5、B【解析】
補集:【詳解】因為,所以,選B.【點睛】本題主要考查了集合的運算,需要掌握交集、并集、補集的運算。屬于基礎(chǔ)題。6、A【解析】由幾何概型公式:A中的概率為,B中的概率為,C中的概率為,D中的概率為.本題選擇A選項.點睛:解答幾何概型問題的關(guān)鍵在于弄清題中的考察對象和對象的活動范圍.當考察對象為點,點的活動范圍在線段上時,用線段長度比計算;當考察對象為線時,一般用角度比計算,即當半徑一定時,由于弧長之比等于其所對應(yīng)的圓心角的度數(shù)之比,所以角度之比實際上是所對的弧長(曲線長)之比.7、D【解析】試題分析:函數(shù)f(x)是定義在上的奇函數(shù),,故答案為D.考點:奇函數(shù)的應(yīng)用.8、C【解析】
根據(jù)圖象求出A,ω和φ的值,得到g(x)的解析式,然后將g(x)圖象上的所有點向左平移個單位長度得到f(x)的圖象.【詳解】由圖象知A=1,(),即函數(shù)的周期T=π,則π,得ω=2,即g(x)=sin(2x+φ),由五點對應(yīng)法得2φ=2kπ+π,k,得φ,則g(x)=sin(2x),將g(x)圖象上的所有點向左平移個單位長度得到f(x)的圖象,即f(x)=sin[2(x)]=sin(2x)=,故選C.【點睛】本題主要考查三角函數(shù)解析式的求解,結(jié)合圖象求出A,ω和φ的值以及利用三角函數(shù)的圖象變換關(guān)系是解決本題的關(guān)鍵.9、B【解析】
先求出的坐標,再由向量共線,列出方程,即可得出結(jié)果.【詳解】因為向量,,所以,又,所以,解得.故選B【點睛】本題主要考查由向量共線求參數(shù)的問題,熟記向量的坐標運算即可,屬于??碱}型.10、C【解析】
由,,聯(lián)立方程組,求出等比數(shù)列的首項和公比,然后求.【詳解】解:若,則,顯然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故選:C.【點睛】本題主要考查等比數(shù)列的前項和公式的應(yīng)用,要求熟練掌握,特別要注意對公比是否等于1要進行討論,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由直線的斜率公式可得=,分析可得,由同角三角函數(shù)的基本關(guān)系式計算可得答案.【詳解】根據(jù)題意,直線的傾斜角為,其斜率為,則有=,則,必有,即,平方有:,得,故,解得或(舍).故答案為﹣【點睛】本題考查直線的傾斜角,涉及同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.12、1【解析】
由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項構(gòu)成首項為1,公比為,偶數(shù)項構(gòu)成首項為,公比為的等比數(shù)列,當為奇數(shù)時,可得,當為偶數(shù)時,可得.所以.故答案為:1.【點睛】本題主要考查了等比數(shù)列的定義,以及無窮等比數(shù)列的極限的計算,其中解答中得出數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】
根據(jù)反正切函數(shù)的值域,結(jié)合條件得出的值.【詳解】,且,因此,,故答案為:.【點睛】本題考查反正切值的求解,解題時要結(jié)合反正切函數(shù)的值域以及特殊角的正切值來求解,考查計算能力,屬于基礎(chǔ)題.14、92【解析】
由題可得,進而可得,再計算出,從而得出答案.【詳解】5個樣本成份的平均值為,標準差為,所以,,即,解得因為,所以所以這批中成藥的藥物功效的平均值藥物單位【點睛】本題考查求幾個數(shù)的平均數(shù),解題的關(guān)鍵是求出,屬于一般題.15、【解析】
先求出,再根據(jù)面積得到,再利用余弦定理和基本不等式得解.【詳解】由題得,所以.由余弦定理得,當且僅當時取等.所以b的最小值是.故答案為:【點睛】本題主要考查余弦定理解三角形,考查基本不等式求最值,意在考查學生對這些知識的理解掌握水平.16、-2【解析】試題分析:∵,∴,∴,∴=-2考點:本題考查了三角函數(shù)的性質(zhì)點評:對于定義域為R的奇函數(shù)恒有f(0)=0.利用此結(jié)論可解決此類問題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和兩個零點計算出和的值,再由最值點以及的的范圍計算的值;(Ⅱ)先根據(jù)(Ⅰ)中解析式將表示出來,然后再利用兩角和的正弦公式計算的值.【詳解】解:(Ⅰ)由函數(shù)最大值為2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【點睛】根據(jù)三角函數(shù)圖象求解析式的步驟:(1)由最值確定的值;(2)由周期確定的值;(3)由最值點或者圖像上的點確定的取值.這里需要注意確定的值時,盡量不要選取平衡位置上的點,這樣容易造成多解的情況.18、(1)見解析;(2)【解析】
(1)作為棱的中點,連結(jié),,通過證明平面可得.(2)根據(jù)等體積法:可求得.【詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結(jié),,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分別為,的中點,∴,∴.又,∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.∵為的中點,∴.又∵平面平面,且平面平面,平面,∴平面.∴.設(shè)點到平面,的距離.在中,,,則.又∵,∴,則.【點睛】本題考查了直線與平面垂直的判定與性質(zhì),考查了等體積法求點面距,屬于中檔題.19、(1)(2)在直線上存在定點,使得恒成立,詳見解析【解析】
(1)求出弦中垂線方程,由中垂線和直線相交得圓心坐標,再求出圓半徑,從而得圓標準方程;(2)直線斜率存在時,設(shè)方程為,代入圓的方程,得的一元二次方程,同時設(shè)交點為由韋達定理得,假設(shè)定點存在,設(shè)其為,由求得,再驗證所作直線斜率不存在時,點也滿足題意.【詳解】(1)的中點為,∴的垂直平分線的斜率為,∴的垂直平分線的方程為,∴的垂直平分線與直線交點為圓心,則,解得,又.∴圓的方程為.(2)當直線的斜率存在時,設(shè)直線的斜率為,則過點的直線方程為,故由,整理得,設(shè),設(shè),則,,,即,當斜率不存在時,成立,∴在直線上存在定點,使得恒成立【點睛】本題考查求圓的標準方程,考查與圓有關(guān)的定點問題.求圓的標準方程可先求出圓心坐標和圓的半徑,然后得標準方程,注意圓心一定在弦的中垂線上.定點問題,通常用設(shè)而不求思想,即設(shè)直線方程與圓方程聯(lián)立消元后得一元二次方程,設(shè)直線與圓的交點坐標為,由韋達定理得,然后設(shè)定點坐標如本題,再由條件求出,若不能求出說明定點不存在,如能求出值,注意驗證直線斜率不存在時,此定點也滿足題意.20、(1)km.(2)【解析】
(1)設(shè)此山高,再根據(jù)三角形中三角函數(shù)的關(guān)系以及正弦定理求解即可.(2)由題意可知,當點C到公路距離最小時,仰望山頂D的仰角達到最大,再計算到直線的距離即可.【詳解】解:(1)設(shè)此山高,則,在中,,,.根據(jù)正弦定理得,即,解得(km).(2)由題意可知,當點C到公路距離最小時,仰望山頂D的仰角達到最大,所以過C作,垂足為E,連接DE.則,,,所以.【點睛】本題主要考查了解三角形在實際中的運用,需要根據(jù)題意找到對應(yīng)的直角三角形中的關(guān)系,或利用正弦定理求解.屬于中檔題.21、(1)2x+y-2=0;(2)x2+y2+2x+2y-8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超聲科培訓制度
- 警校泅渡館制度
- 行為安全觀察制度
- 甜言蜜語培訓課件
- 2026上半年四川雅安市雨城區(qū)總醫(yī)院招聘勞務(wù)派遣人員15人備考考試試題附答案解析
- 2026福建寧德市古田縣衛(wèi)生健康局招聘緊缺急需人才14人備考考試試題附答案解析
- 2026黑龍江綏化市諾敏河人民法院招聘聘用制書記員2人備考考試試題附答案解析
- 2026航空工業(yè)上電校園招聘備考考試題庫附答案解析
- 2026年日照市市屬事業(yè)單位公開招聘初級綜合類崗位人員(21人)參考考試題庫附答案解析
- 2026年上半年黑龍江事業(yè)單位聯(lián)考齊齊哈爾市招聘253人備考考試試題附答案解析
- 《筑牢安全防線 歡度平安寒假》2026年寒假安全教育主題班會課件
- 養(yǎng)老院老人生活設(shè)施管理制度
- 2026年稅務(wù)稽查崗位考試試題及稽查實操指引含答案
- (2025年)林業(yè)系統(tǒng)事業(yè)單位招聘考試《林業(yè)知識》真題庫與答案
- 2026版安全隱患排查治理
- 道路施工安全管理課件
- 2026年七臺河職業(yè)學院高職單招職業(yè)適應(yīng)性考試備考題庫有答案解析
- 辦公樓電梯間衛(wèi)生管理方案
- 新生兒休克診療指南
- 專題學習活動 期末復習課件 新教材統(tǒng)編版八年級語文上冊
- VTE患者并發(fā)癥預防與處理
評論
0/150
提交評論