湖北省羅田縣一中2022年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
湖北省羅田縣一中2022年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
湖北省羅田縣一中2022年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
湖北省羅田縣一中2022年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
湖北省羅田縣一中2022年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為圓的一條直徑,點的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.2.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數(shù)是()A.1 B.2 C.3 D.43.如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番;D.為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.4.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.25.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.6.若函數(shù)的圖象經(jīng)過點,則函數(shù)圖象的一條對稱軸的方程可以為()A. B. C. D.7.若集合,則=()A. B. C. D.8.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實數(shù)()A. B. C. D.9.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內(nèi)切圓半徑為()A. B. C. D.10.已知橢圓的中心為原點,為的左焦點,為上一點,滿足且,則橢圓的方程為()A. B. C. D.11.達芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.12.已知命題,,則是()A., B.,.C., D.,.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在內(nèi)有兩個零點,則實數(shù)的取值范圍是________.14.設(shè)滿足約束條件,則的取值范圍是______.15.函數(shù)與的圖象上存在關(guān)于軸的對稱點,則實數(shù)的取值范圍為______.16.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當(dāng)直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.18.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.19.(12分)設(shè)數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.20.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.21.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問題,涉及到向量的線性運算、數(shù)量積、點到直線的距離等知識,考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.2、C【解析】

解:對于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過程中,需要認(rèn)真分析,得到結(jié)果,注意對知識點的靈活運用.3、D【解析】

根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預(yù)測的方法,屬于基礎(chǔ)題.4、B【解析】

首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.5、D【解析】

以BC的中點為坐標(biāo)原點,建立直角坐標(biāo)系,可得,設(shè),運用向量的坐標(biāo)表示,求得點A的軌跡,進而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標(biāo)原點,建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.6、B【解析】

由點求得的值,化簡解析式,根據(jù)三角函數(shù)對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據(jù)三角函數(shù)圖象上點的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對稱軸的求法,屬于中檔題.7、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎(chǔ)題.8、B【解析】

求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值.9、B【解析】

首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.10、B【解析】由題意可得c=,設(shè)右焦點為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點睛:橢圓的定義:到兩定點距離之和為常數(shù)的點的軌跡,當(dāng)和大于兩定點間的距離時,軌跡是橢圓,當(dāng)和等于兩定點間的距離時,軌跡是線段(兩定點間的連線段),當(dāng)和小于兩定點間的距離時,軌跡不存在.11、A【解析】

由已知,設(shè).可得.于是可得,進而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計算能力,屬于中檔題.12、B【解析】

根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價于函數(shù),即有兩個解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時,易知不成立;當(dāng)時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.【點睛】本題考查了函數(shù)零點問題,意在考查學(xué)生的轉(zhuǎn)化能力和計算能力,畫出圖像是解題的關(guān)鍵.14、【解析】

作出可行域,將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質(zhì)即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當(dāng)時,z=0;當(dāng)時將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.15、【解析】

先求得與關(guān)于軸對稱的函數(shù),將問題轉(zhuǎn)化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數(shù)的取值范圍.【詳解】因為關(guān)于軸對稱的函數(shù)為,因為函數(shù)與的圖象上存在關(guān)于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉(zhuǎn)化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數(shù)與的圖象必有交點,滿足題意;若,設(shè),相切時,切點的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時,,的圖象有交點,此時,與的圖象有交點,函數(shù)與的圖象上存在關(guān)于軸的對稱點,綜上可得,實數(shù)的取值范圍為.故答案為:【點睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點以及對稱性,函數(shù)與方程等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,推理與運算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識.16、1【解析】

按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;②當(dāng)9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種.故答案為:1.【點睛】本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題.做題時注意分類做到不重不漏,分步做到步驟完整.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①證明見解析;②【解析】

(1)由題意焦距為2,設(shè)點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標(biāo)準(zhǔn)方程.(2)①由題意,聯(lián)立直線與橢圓的方程,得,推導(dǎo)出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,推導(dǎo)出,,由此推導(dǎo)出(定值).【詳解】(1)由題意焦距為2,可設(shè)點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標(biāo)準(zhǔn)方程為.(2)①由題意,聯(lián)立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設(shè),,,,直線,代入橢圓標(biāo)準(zhǔn)方程:,得,,,,(定值).【點睛】本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題.18、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性質(zhì)得出,由平面得出,進而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標(biāo)原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,在中,,,,、、、,設(shè)平面的一個法向量,,,由,得,令,則,,.設(shè)平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.19、(1)(2)見解析【解析】

(1)設(shè)數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設(shè)數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點睛】本題考查等差數(shù)列的通項公式的計算,放縮法證明數(shù)列不等式,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設(shè)O是AC的中點,連接,OB.因為為正三角形,所以,又平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論