新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練8.10 零點定理(基礎(chǔ)版)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練8.10 零點定理(基礎(chǔ)版)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練8.10 零點定理(基礎(chǔ)版)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練8.10 零點定理(基礎(chǔ)版)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練8.10 零點定理(基礎(chǔ)版)(解析版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

8.10零點定理(精講)(基礎(chǔ)版)思維導(dǎo)圖思維導(dǎo)圖考點呈現(xiàn)考點呈現(xiàn)例題剖析例題剖析考點一零點的求解【例1】(2022·廣東)函數(shù)SKIPIF1<0的零點為(

)A.10 B.9 C.(10,0) D.(9,0)【答案】A【解析】令SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因此x=10,所以函數(shù)SKIPIF1<0的零點為10,故選:A.【一隅三反】1.(2022·廣西)若SKIPIF1<0是函數(shù)SKIPIF1<0的一個零點,則SKIPIF1<0的另一個零點為(

)A.1 B.2 C.(1,0) D.(2,0)【答案】A【解析】因為SKIPIF1<0是函數(shù)SKIPIF1<0的一個零點,所以SKIPIF1<0,解得SKIPIF1<0.設(shè)另一個零點為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的另一個零點為1.故選:A.2.(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0為等比數(shù)列,若SKIPIF1<0,SKIPIF1<0為函數(shù)SKIPIF1<0的兩個零點,則SKIPIF1<0(

)A.10 B.12 C.32 D.33【答案】B【解析】因為SKIPIF1<0,SKIPIF1<0為函數(shù)SKIPIF1<0的兩個零點,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0所以,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0.故選:B3.(2022·貴州)函數(shù)SKIPIF1<0的零點為(

)A.2 B.1 C.0 D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點為SKIPIF1<0;故選:D4.(2022·云南)函數(shù)f(x)=x2﹣4x+4的零點是()A.(0,2) B.(2,0) C.2 D.4【答案】C【解析】由f(x)=x2﹣4x+4=0得,x=2,所以函數(shù)f(x)=x2﹣4x+4的零點是2,故選:C.考點二零點區(qū)間【例2】(2022高三上·安徽期末)函數(shù)SKIPIF1<0的零點所在的區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0為SKIPIF1<0上的遞增函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的零點所在的區(qū)間為SKIPIF1<0。故答案為:B【一隅三反】1.(2022高三上·青島期中)方程SKIPIF1<0的實數(shù)根所在的區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是方程SKIPIF1<0的實數(shù)根所在一個區(qū)間.又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故方程SKIPIF1<0有唯一零點.故答案為:A.2.(2022·大連模擬)函數(shù)SKIPIF1<0,在下列區(qū)間中,包含函數(shù)SKIPIF1<0零點的區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因為函數(shù)f(x)單調(diào)遞增,且因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由零點存在性定理可得:包含函數(shù)SKIPIF1<0零點的區(qū)間為SKIPIF1<0.故答案為:C3.(2021高三上·河南期中)下列區(qū)間一定包含函數(shù)SKIPIF1<0的零點的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以區(qū)間SKIPIF1<0一定包含SKIPIF1<0的零點.故答案為:C.

考點三零點的個數(shù)【例3-1】(2022·呂梁模擬)函數(shù)SKIPIF1<0的零點個數(shù)為()A.1 B.2 C.3 D.4【答案】B【解析】由題設(shè),SKIPIF1<0且SKIPIF1<0定義域為SKIPIF1<0,所以在SKIPIF1<0上SKIPIF1<0,在SKIPIF1<0上SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0的極小值為SKIPIF1<0,又因為SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0、SKIPIF1<0上各有一個零點,共有2個零點。故答案為:B【例3-2】(2022·延慶模擬)已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的零點個數(shù)為()A.1個 B.2個 C.3個 D.4個【答案】C【解析】由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,又因為SKIPIF1<0,則SKIPIF1<0,或SKIPIF1<0,或SKIPIF1<0,則SKIPIF1<0的零點個數(shù)為3。故答案為:C【例3-3】(2021·西安模擬)函數(shù)SKIPIF1<0在區(qū)間(0,1)內(nèi)的零點個數(shù)是()A.0 B.1 C.2 D.3【答案】B【解析】SKIPIF1<0,在SKIPIF1<0范圍內(nèi)SKIPIF1<0,函數(shù)為單調(diào)遞增函數(shù).又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0存在零點,又因為函數(shù)為單調(diào)函數(shù),故零點只有一個。故答案為:B【一隅三反】1.(2021·云南模擬)函數(shù)SKIPIF1<0在SKIPIF1<0上的零點個數(shù)為()A.2 B.3 C.4 D.5【答案】B【解析】由SKIPIF1<0,得SKIPIF1<0,作出函數(shù)SKIPIF1<0在SKIPIF1<0上的圖象如圖所示,因為SKIPIF1<0,所以由圖可知直線SKIPIF1<0與圖象有3個交點,從而SKIPIF1<0在SKIPIF1<0上有3個零點.故答案為:B2.(2022·安徽宣城)函數(shù)SKIPIF1<0的零點個數(shù)為(

)A.1 B.2 C.3 D.4【答案】C【解析】SKIPIF1<0;在同一直角坐標(biāo)系內(nèi)畫出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,又SKIPIF1<0,SKIPIF1<0;所以函數(shù)SKIPIF1<0和SKIPIF1<0恰有3個交點,即函數(shù)SKIPIF1<0有3個零點,故選:C.3(2022·重慶·三模)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)為(

)A.SKIPIF1<0個 B.SKIPIF1<0個 C.SKIPIF1<0個 D.SKIPIF1<0個【答案】C【解析】當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0(舍去);當(dāng)SKIPIF1<0時,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.綜上所述,函數(shù)SKIPIF1<0的零點個數(shù)為SKIPIF1<0.故選:C.4.(2022·全國·課時練習(xí))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點個數(shù)為(

)A.6 B.5 C.4 D.3【答案】C【解析】函數(shù)SKIPIF1<0在SKIPIF1<0上零點的個數(shù)即方程SKIPIF1<0在SKIPIF1<0上解的個數(shù),方程SKIPIF1<0化簡可得SKIPIF1<0SKIPIF1<0,所以方程方程SKIPIF1<0的解的個數(shù)為函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0SKIPIF1<0的圖象交點的個數(shù),其中SKIPIF1<0,在同一坐標(biāo)系中作出函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0SKIPIF1<0的圖象如圖所示,由圖可知在區(qū)間SKIPIF1<0上,兩函數(shù)圖象有4個交點,故函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點個數(shù)為4,故選:C.考點四求參數(shù)【例4-1】(2022·昌平模擬)若函數(shù)SKIPIF1<0有且僅有兩個零點,則實數(shù)SKIPIF1<0的一個取值為.【答案】SKIPIF1<0(答案不唯一)【解析】令SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0為函數(shù)SKIPIF1<0的一個零點,故當(dāng)SKIPIF1<0時,SKIPIF1<0有一解,得SKIPIF1<0故答案為:SKIPIF1<0(答案不唯一)【例4-2】(2022高三上·西寧期末)已知函數(shù)f(x)=lnx,x>0,?xA.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,作出函數(shù)SKIPIF1<0的大致圖象,如圖所示,則函數(shù)SKIPIF1<0有6個零點等價于SKIPIF1<0在SKIPIF1<0上有兩個不同的實數(shù)根,則m2?4>0g(?3)=9?3m+1≥0,g(1)=1+m+1>0,?3<?【一隅三反】1.(2021·江蘇)若方程SKIPIF1<0,且SKIPIF1<0有兩個不同實數(shù)根,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意可知,方程SKIPIF1<0有兩個不同實數(shù)根,等價于函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個不同的交點,當(dāng)SKIPIF1<0時,如圖所示,由圖可知,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個不同的交點,滿足題意當(dāng)SKIPIF1<0時,如圖所示由圖可知,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有且僅有一個交點,不滿足題意,綜上所示,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.2.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上恰有4個零點,則實數(shù)a的取值范圍是(

)A.(1,3) B.(2,4) C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上恰有4個零點,等價SKIPIF1<0與SKIPIF1<0圖象恰好有4個交點,因為x∈SKIPIF1<0,所以SKIPIF1<0,如圖所示,則應(yīng)該滿足SKIPIF1<0,解得SKIPIF1<0.故選:C.3.(2022·全國·課時練習(xí))已知函數(shù)SKIPIF1<0有零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0有零點,SKIPIF1<0與SKIPIF1<0有交點,SKIPIF1<0,即SKIPIF1<0,故選:C4.(2022·北京大興)若函數(shù)SKIPIF1<0恰有SKIPIF1<0個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0時至多有一個零點,單調(diào)函數(shù)SKIPIF1<0至多一個零點,而函數(shù)SKIPIF1<0恰有SKIPIF1<0個零點,所以需滿足SKIPIF1<0有1個零點,SKIPIF1<0有1個零點,所以SKIPIF1<0,解得SKIPIF1<0,故選:D8.10零點定理(精練)(基礎(chǔ)版)題組一題組一零點的求解1.(2022·上海)若函數(shù)SKIPIF1<0的零點為2,則函數(shù)SKIPIF1<0的零點是(

)A.0,SKIPIF1<0 B.0,SKIPIF1<0 C.0,2 D.2,SKIPIF1<0【答案】A【解析】因為函數(shù)SKIPIF1<0的零點為2,所以SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.故選:A.2.(2022·北京)已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的零點個數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.不能確定【答案】C【解析】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0二次函數(shù)SKIPIF1<0有SKIPIF1<0個零點.故選:C.3.(2022·福建福州)(多選)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點是(

)A.-1 B.0 C.1 D.2【答案】ABC【解析】令SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時,有SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時,有SKIPIF1<0,則SKIPIF1<0;故函數(shù)SKIPIF1<0的零點是SKIPIF1<0故選:ABC4.(2021高三上·吉林月考)(多選)等比數(shù)列SKIPIF1<0中,SKIPIF1<0與SKIPIF1<0是函數(shù)SKIPIF1<0的兩個零點,則SKIPIF1<0的值為()A.-2 B.2 C.-5 D.5【答案】B【解析】由題意,SKIPIF1<0與SKIPIF1<0是函數(shù)SKIPIF1<0的兩個零點令SKIPIF1<0由韋達定理,SKIPIF1<0由于SKIPIF1<0為等比數(shù)列,故SKIPIF1<0故答案為:B5.(2022·全國·專題練習(xí))函數(shù)SKIPIF1<0的零點是___.【答案】8【解析】由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的零點為8.故答案為:86.(2022·福建·廈門外國語學(xué)校)已知函數(shù)SKIPIF1<0則方程SKIPIF1<0的根___________.【答案】SKIPIF1<0或2【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0有唯一根SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0(舍去)或2,故當(dāng)SKIPIF1<0時,SKIPIF1<0的根為2,綜上,SKIPIF1<0根為SKIPIF1<0或2.故答案為:SKIPIF1<0或2.7.(2022·廣東·佛山市南海區(qū)桂城中學(xué))函數(shù)SKIPIF1<0的導(dǎo)數(shù)的零點組成的集合為___________.【答案】SKIPIF1<0【解析】SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0題組二題組二零點區(qū)間1.(2021高三上·陜西月考)函數(shù)SKIPIF1<0的零點所在的一個區(qū)間是()A.(1,2) B.(2,3) C.(3,4) D.(4,5)【答案】B【解析】函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增且連續(xù),且SKIPIF1<0SKIPIF1<0,SKIPIF1<0;故函數(shù)SKIPIF1<0的零點所在的一個區(qū)間是(2,3).故答案為:B.

2.(2021高三上·月考)下列區(qū)間中,包含函數(shù)SKIPIF1<0的零點的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0的零點在SKIPIF1<0內(nèi).故答案為:C3.(2022高三上·興寧期末)若SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以有SKIPIF1<0,SKIPIF1<0,所以由零點存在性定理可知函數(shù)SKIPIF1<0的一個零點位于SKIPIF1<0.故答案為:C4.(2022高三上·遼寧期中)已知函數(shù)SKIPIF1<0,那么在下列區(qū)間中含有函數(shù)SKIPIF1<0零點的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因為函數(shù)SKIPIF1<0,是連續(xù)單調(diào)函數(shù),且SKIPIF1<0SKIPIF1<0,∴函數(shù)f(x)在區(qū)間SKIPIF1<0必有零點,故答案為:B.5.(2022高三上·海安月考)函數(shù)SKIPIF1<0的零點所在的大致區(qū)間是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的零點所在的大致區(qū)間為SKIPIF1<0.故答案為:A.題組三題組三零點的個數(shù)1.(2022高三上·河南期中)已知函數(shù)f(x)=x2?2x,x≥0x?4x,x<0A.1 B.2 C.3 D.4【答案】B【解析】當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍);當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍)∴SKIPIF1<0或SKIPIF1<0為函數(shù)SKIPIF1<0的零點,則函數(shù)SKIPIF1<0有2個零點.故答案為:B.2.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0,SKIPIF1<0的零點個數(shù)()A.5或6個 B.3或9個 C.9或10個 D.5或9個【答案】D【解析】設(shè)SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,此時函數(shù)單調(diào)遞增,由SKIPIF1<0得SKIPIF1<0,此時函數(shù)單調(diào)遞減,即函數(shù)在SKIPIF1<0處取得極大值SKIPIF1<0,函數(shù)在SKIPIF1<0處取得極小值SKIPIF1<0,又由SKIPIF1<0,SKIPIF1<0可得圖象:若SKIPIF1<0,SKIPIF1<0,則方程有三個解,滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時,方程SKIPIF1<0,有3個根,當(dāng)SKIPIF1<0時,方程SKIPIF1<0,有3個根,當(dāng)SKIPIF1<0時,方程SKIPIF1<0,有3個根,此時共有9個根,若SKIPIF1<0,SKIPIF1<0,則方程有兩個解,滿足SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時,方程SKIPIF1<0,有3個根,當(dāng)SKIPIF1<0,有2個根,此時共有5個根,同理SKIPIF1<0,SKIPIF1<0,也共有5個根故選:D.3.(2022·黑龍江)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(

)A.4 B.5 C.6 D.7【答案】B【解析】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,分別作出函數(shù)SKIPIF1<0和直線SKIPIF1<0的圖象,如圖所示,由圖象可得有兩個交點,橫坐標(biāo)設(shè)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,對于SKIPIF1<0,分別作出函數(shù)SKIPIF1<0和直線SKIPIF1<0的圖象,如圖所示,由圖象可得,當(dāng)SKIPIF1<0時,即方程SKIPIF1<0有兩個不相等的根,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0和直線SKIPIF1<0有三個交點,即方程SKIPIF1<0有三個不相等的根,綜上可得SKIPIF1<0的實根個數(shù)為SKIPIF1<0,即函數(shù)SKIPIF1<0的零點個數(shù)是5.故選:B.4.(2023·全國·高三專題練習(xí))若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點個數(shù)是(

)A.1 B.2 C.3 D.4【答案】D【解析】由題意知,f(x)是周期為2的偶函數(shù).在同一坐標(biāo)系內(nèi)作出函數(shù)y=f(x)及y=log3|x|的圖象,如下:觀察圖象可以發(fā)現(xiàn)它們有4個交點,即函數(shù)y=f(x)-log3|x|有4個零點.故選:D.5.(2022·西安模擬)已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)至少為()A.3 B.4 C.5 D.6【答案】C【解析】SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0,且零點關(guān)于原點對稱,SKIPIF1<0零點個數(shù)為奇數(shù),排除選項SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點至少有SKIPIF1<0個,

故答案為:C.6.(2022·新疆三模)函數(shù)SKIPIF1<0的零點個數(shù)為.【答案】2【解析】當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,此時有1個零點;當(dāng)SKIPIF1<0時,SKIPIF1<0,顯然SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,由零點存在定理知此時有1個零點;綜上共有2個零點.故答案為:2.7.(2022·全國·課時練習(xí))函數(shù)SKIPIF1<0的零點個數(shù)為________.【答案】1【解析】解法一:令SKIPIF1<0,可得方程SKIPIF1<0,即SKIPIF1<0,故原函數(shù)的零點個數(shù)即為函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點個數(shù).在同一平面直角坐標(biāo)系中作出兩個函數(shù)的大致圖象(如圖).由圖可知,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象只有一個交點,故函數(shù)SKIPIF1<0只有一個零點,故答案為:1解法二:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0的圖象在SKIPIF1<0上是不間斷的,∴SKIPIF1<0在SKIPIF1<0上必有零點,又SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增的,∴函數(shù)SKIPIF1<0的零點有且只有一個,故答案為:18.(2022·全國·課時練習(xí))函數(shù)SKIPIF1<0的零點個數(shù)為________.【答案】1【解析】令SKIPIF1<0,可得方程SKIPIF1<0.在同一平面直角坐標(biāo)系內(nèi)作出函數(shù)SKIPIF1<0與SKIPIF1<0的圖象,如圖,由圖可知,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象只有一個交點,故方程SKIPIF1<0只有一個解,故函數(shù)SKIPIF1<0只有一個零點.故答案為:1.9.(2022·河南·鄭州十九中高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0則函數(shù)SKIPIF1<0的零點個數(shù)是___________.【答案】5【解析】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,分別作出SKIPIF1<0和直線SKIPIF1<0,由圖象可得有兩個交點,橫坐標(biāo)設(shè)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即有SKIPIF1<0有2根;SKIPIF1<0時,SKIPIF1<0有3個不等實根,綜上可得SKIPIF1<0的實根個數(shù)為5,即函數(shù)SKIPIF1<0的零點個數(shù)是5.故答案為:5.10.(2023·全國·高三專題練習(xí))若偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,在SKIPIF1<0時,SKIPIF1<0,則關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上根的個數(shù)是___.【答案】4【解析】SKIPIF1<0滿足SKIPIF1<0,故可得SKIPIF1<0,所以函數(shù)SKIPIF1<0是以2為周期的周期函數(shù),且SKIPIF1<0是偶函數(shù)根據(jù)SKIPIF1<0,SKIPIF1<0得該函數(shù)在[0,4]上的圖象為:再在同一坐標(biāo)系中做出函數(shù)SKIPIF1<0的圖象,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,而當(dāng)SKIPIF1<0時,SKIPIF1<0如圖,當(dāng)SKIPIF1<0時,兩函數(shù)圖象有四個交點.所以方程SKIPIF1<0在[0,4]上有4個根.故答案為:4.11.(2022·全國·專題練習(xí))奇函數(shù)SKIPIF1<0定義在SKIPIF1<0上,且對常數(shù)SKIPIF1<0,恒有SKIPIF1<0,則在區(qū)間SKIPIF1<0上,方程SKIPIF1<0根的個數(shù)最小值為_______.【答案】5【解析】SKIPIF1<0函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),故SKIPIF1<0,又SKIPIF1<0,即周期為SKIPIF1<0,SKIPIF1<0,又由SKIPIF1<0,且SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故在區(qū)間SKIPIF1<0,方程SKIPIF1<0根有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,個數(shù)最小值是SKIPIF1<0個,故答案為:5.12.(2022·全國·專題練習(xí))已知函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上零點的個數(shù)為_______.【答案】3【解析】SKIPIF1<0函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,(SKIPIF1<0的對稱軸是SKIPIF1<0)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0知,SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0滿足條件,故零點有三個.故答案為:3題組四題組四求參數(shù)1.(2022·四川雅安)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個不同的零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】函數(shù)SKIPIF1<0有兩個不同的零點,即方程SKIPIF1<0有兩個不同的根,從而函數(shù)SKIPIF1<0的圖象和函數(shù)SKIPIF1<0的圖象有兩個不同的交點,由SKIPIF1<0可知,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0是周期為1的函數(shù),如圖,在同一直角坐標(biāo)系中作出函數(shù)SKIPIF1<0的圖象和函數(shù)SKIPIF1<0的圖象,數(shù)形結(jié)合可得,當(dāng)SKIPIF1<0即SKIPIF1<0時,兩函數(shù)圖象有兩個不同的交點,故函數(shù)SKIPIF1<0有兩個不同的零點.故選:A.2.(2021·全國·單元測試)已知函數(shù)SKIPIF1<0有唯一的零點,則實數(shù)a的值為(

)A.1 B.-1 C.0 D.-2【答案】B【解析】函數(shù)SKIPIF1<0定義域為R,函數(shù)SKIPIF1<0,即函數(shù)SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,則當(dāng)SKIPIF1<0時,SKIPIF1<0,因函數(shù)SKIPIF1<0有唯一的零點,于是得SKIPIF1<0,解得SKIPIF1<0,所以實數(shù)a的值為SKIPIF1<0.故選:B3.(2022·遼寧·東北育才雙語學(xué)校一模)已知函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0有6個不同的實數(shù)根,則m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】畫出SKIPIF1<0的圖象如圖,令SKIPIF1<0,則先討論SKIPIF1<0的零點.當(dāng)SKIPIF1<0,即SKIPIF1<0時,不合題意;當(dāng)SKIPIF1<0,即SKIPIF1<0時,易得SKIPIF1<0或SKIPIF1<0,此時當(dāng)SKIPIF1<0或SKIPIF1<0時均不滿足有6個零點,不合題意;故SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,設(shè)SKIPIF1<0的兩根為SKIPIF1<0,不妨設(shè)SKIPIF1<0,由韋達定理SKIPIF1<0,且SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論