版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE9-第1節(jié)萬(wàn)有引力定律及引力常量的測(cè)定學(xué)習(xí)目標(biāo)知識(shí)脈絡(luò)(老師用書(shū)獨(dú)具)1.了解開(kāi)普勒三定律的內(nèi)容.2.知道萬(wàn)有引力定律的內(nèi)容、表達(dá)式及適用條件,并會(huì)用其解決簡(jiǎn)潔的問(wèn)題.(重點(diǎn))3.知道萬(wàn)有引力常量的測(cè)定方法及該常量在物理學(xué)上的重要意義.4.會(huì)用萬(wàn)有引力定律計(jì)算天體質(zhì)量,駕馭天體質(zhì)量求解的基本思路.(重點(diǎn)、難點(diǎn))一、行星運(yùn)動(dòng)的規(guī)律開(kāi)普勒三定律定律內(nèi)容圖示開(kāi)普勒第肯定律全部行星繞太陽(yáng)運(yùn)動(dòng)的軌道都是橢圓,太陽(yáng)位于橢圓的一個(gè)焦點(diǎn)上開(kāi)普勒其次定律太陽(yáng)與任何一個(gè)行星的連線(矢徑)在相等的時(shí)間內(nèi)掃過(guò)的面積相等開(kāi)普勒第三定律行星繞太陽(yáng)運(yùn)行軌道半長(zhǎng)軸r的立方與其公轉(zhuǎn)周期T的平方成正比,公式:eq\f(r3,T2)=k二、萬(wàn)有引力定律1.內(nèi)容自然界中任何兩個(gè)物體都是相互吸引的,引力的方向沿兩物體的連線,引力的大小F與這兩個(gè)物體質(zhì)量的乘積m1m2成正比,與這兩個(gè)物體間距離r的平方成反比.2.表達(dá)式:F=eq\f(Gm1m2,r2)(1)r是兩質(zhì)點(diǎn)間的距離(若為勻質(zhì)球體,則是兩球心的距離).(2)G為萬(wàn)有引力常量,G=6.67×10-11N·m2/kg2.三、引力常量的測(cè)定及意義1.在1798年,即牛頓發(fā)覺(jué)萬(wàn)有引力定律一百多年以后,英國(guó)物理學(xué)家卡文迪許利用扭秤試驗(yàn),較精確地測(cè)出了引力常量.G=6.67×10-11N·m2/kg2.2.意義:運(yùn)用萬(wàn)有引力定律能進(jìn)行定量運(yùn)算,顯示出其真正的好用價(jià)值.3.知道G的值后,利用萬(wàn)有引力定律可以計(jì)算出天體的質(zhì)量,卡文迪許也因此被稱(chēng)為“能稱(chēng)出地球質(zhì)量的人”.1.思索推斷(正確的打“√”,錯(cuò)誤的打“×”)(1)為了便于探討問(wèn)題,通常認(rèn)為行星繞太陽(yáng)做勻速圓周運(yùn)動(dòng). (√)(2)太陽(yáng)系中全部行星的運(yùn)動(dòng)速率是不變的. (×)(3)太陽(yáng)系中軌道半徑大的行星其運(yùn)動(dòng)周期也長(zhǎng). (√)(4)一個(gè)蘋(píng)果由于其質(zhì)量很小,所以它受的萬(wàn)有引力幾乎可以忽視. (×)(5)任何兩物體間都存在萬(wàn)有引力. (√)(6)地球?qū)υ虑虻囊εc地面上的物體所受的地球引力是兩種不同性質(zhì)的力. (×)(7)引力常量是牛頓首先測(cè)出的. (×)(8)卡文迪許通過(guò)變更質(zhì)量和距離,證明了萬(wàn)有引力的存在及萬(wàn)有引力定律的正確性. (√)(9)卡文迪許第一次測(cè)出了引力常量,使萬(wàn)有引力定律能進(jìn)行定量計(jì)算,顯示出真正的好用價(jià)值. (√)2.關(guān)于開(kāi)普勒對(duì)于行星運(yùn)動(dòng)規(guī)律的相識(shí),下列說(shuō)法正確的是()A.全部行星繞太陽(yáng)運(yùn)動(dòng)的軌道都是橢圓B.全部行星繞太陽(yáng)運(yùn)動(dòng)的軌道都是圓C.全部行星的軌道半長(zhǎng)軸的二次方跟公轉(zhuǎn)周期的三次方的比值都相同D.全部行星的公轉(zhuǎn)周期與行星的軌道半徑成正比A[由開(kāi)普勒第肯定律知全部行星繞太陽(yáng)運(yùn)動(dòng)的軌道都是橢圓,太陽(yáng)處在橢圓的一個(gè)焦點(diǎn)上,選項(xiàng)A正確,B錯(cuò)誤;由開(kāi)普勒第三定律知全部行星的軌道半長(zhǎng)軸的三次方跟它的公轉(zhuǎn)周期的二次方的比值都相等,選項(xiàng)C、D錯(cuò)誤.]3.要使兩物體間的萬(wàn)有引力減小到原來(lái)的eq\f(1,4),下列方法不行采納的是()A.使物體的質(zhì)量各減小一半,距離不變B.使其中一個(gè)物體的質(zhì)量減小到原來(lái)的eq\f(1,4),距離不變C.使兩物體間的距離增為原來(lái)的2倍,質(zhì)量不變D.使兩物體間的距離和質(zhì)量都減為原來(lái)的eq\f(1,4)D[依據(jù)F=Geq\f(m1m2,r2)可知,A、B、C三種狀況中萬(wàn)有引力均減為原來(lái)的eq\f(1,4),當(dāng)距離和質(zhì)量都減為原來(lái)的eq\f(1,4)時(shí),萬(wàn)有引力不變,選項(xiàng)D錯(cuò)誤.]4.對(duì)于引力常量G的理解,下列說(shuō)法中錯(cuò)誤的是()A.G是一個(gè)比值,在數(shù)值上等于質(zhì)量均為1kg的兩個(gè)質(zhì)點(diǎn)相距1m時(shí)的引力大小B.G的數(shù)值是為了便利而人為規(guī)定的C.G的測(cè)定使萬(wàn)有引力定律公式更具有實(shí)際意義D.G的測(cè)定從某種意義上也能夠說(shuō)明萬(wàn)有引力定律公式的正確性B[依據(jù)萬(wàn)有引力定律公式F=Geq\f(m1m2,r2)可知,G=eq\f(Fr2,m1m2),當(dāng)r=1m,m1=m2=1kg時(shí),G=F,故A正確;G是一個(gè)有單位的物理量,單位是m3/(kg·s2).G的數(shù)值不是人為規(guī)定的,而是在牛頓發(fā)覺(jué)萬(wàn)有引力定律一百多年后,由卡文迪許利用扭秤試驗(yàn)測(cè)出的,故B錯(cuò)誤,C、D正確.]行星運(yùn)動(dòng)的規(guī)律1.從空間分布上相識(shí):行星的運(yùn)行軌道都是橢圓,不同行星軌道的半長(zhǎng)軸不同,即各行星的橢圓軌道大小不同,但全部軌道都有一個(gè)共同的焦點(diǎn),太陽(yáng)在此焦點(diǎn)上.因此開(kāi)普勒第肯定律又叫焦點(diǎn)定律.2.對(duì)速度大小的相識(shí)(1)如圖所示,假如時(shí)間間隔相等,即t2-t1=t4-t3,由開(kāi)普勒其次定律,面積SA=SB,可見(jiàn)離太陽(yáng)越近,行星在相等時(shí)間內(nèi)經(jīng)過(guò)的弧長(zhǎng)越長(zhǎng),即行星的速率越大.因此開(kāi)普勒其次定律又叫面積定律.(2)近日點(diǎn)、遠(yuǎn)日點(diǎn)分別是行星距離太陽(yáng)的最近點(diǎn)、最遠(yuǎn)點(diǎn),所以同一行星在近日點(diǎn)速度最大,在遠(yuǎn)日點(diǎn)速度最?。?.對(duì)周期長(zhǎng)短的相識(shí)(1)行星公轉(zhuǎn)周期跟軌道半長(zhǎng)軸之間有依靠關(guān)系,橢圓軌道半長(zhǎng)軸越長(zhǎng)的行星,其公轉(zhuǎn)周期越長(zhǎng);反之,其公轉(zhuǎn)周期越短.(2)該定律不僅適用于行星,也適用于其他天體.例如,繞某一行星運(yùn)動(dòng)的不同衛(wèi)星.(3)探討行星時(shí),常數(shù)k與行星無(wú)關(guān),只與太陽(yáng)有關(guān).探討其他天體時(shí),常數(shù)k只與其中心天體有關(guān).1.某行星繞太陽(yáng)運(yùn)行的橢圓軌道如圖所示,F(xiàn)1和F2是橢圓軌道的兩個(gè)焦點(diǎn),行星在A點(diǎn)的速率比在B點(diǎn)的大,則太陽(yáng)是位于()A.F2 B.AC.F1 D.BA[依據(jù)開(kāi)普勒其次定律:太陽(yáng)和行星的連線在相等的時(shí)間內(nèi)掃過(guò)相等的面積,因?yàn)樾行窃贏點(diǎn)的速率比在B點(diǎn)的速率大,所以太陽(yáng)在離A點(diǎn)近的焦點(diǎn)上,故太陽(yáng)位于F2.]2.某人造地球衛(wèi)星運(yùn)行時(shí),其軌道半徑為月球軌道半徑的eq\f(1,3),則此衛(wèi)星運(yùn)行周期大約是()A.3~5天 B.5~7天C.7~9天 D.大于9天B[月球繞地球運(yùn)行的周期約為27天,依據(jù)開(kāi)普勒第三定律eq\f(r3,T2)=k,得eq\f(r3,T2)=eq\f(r\o\al(3,月),T\o\al(2,月)),則T=eq\f(1,3)×27×eq\r(\f(1,3))(天)≈5.2(天).]應(yīng)用開(kāi)普勒定律留意的問(wèn)題1.適用對(duì)象:開(kāi)普勒定律不僅適用于行星,也適用于衛(wèi)星,只不過(guò)此時(shí)eq\f(r3,T2)=k,比值k是由中心天體所確定的另一恒量,與環(huán)繞天體無(wú)關(guān).2.定律的性質(zhì):開(kāi)普勒定律是總結(jié)行星運(yùn)動(dòng)的視察結(jié)果而總結(jié)出來(lái)的規(guī)律.它們每一條都是閱歷定律,都是從視察行星運(yùn)動(dòng)所取得的資料中總結(jié)出來(lái)的.3.對(duì)速度的相識(shí):當(dāng)行星在近日點(diǎn)時(shí),速度最大.由近日點(diǎn)向遠(yuǎn)日點(diǎn)運(yùn)動(dòng)的過(guò)程中,速度漸漸減小,在遠(yuǎn)日點(diǎn)時(shí)速度最?。f(wàn)有引力定律1.萬(wàn)有引力定律公式的適用條件:嚴(yán)格地說(shuō),萬(wàn)有引力定律公式F=Geq\f(m1m2,r2)只適用于計(jì)算兩個(gè)質(zhì)點(diǎn)間的相互作用,但對(duì)于下述兩類(lèi)狀況,也可用該公式計(jì)算:(1)兩個(gè)質(zhì)量分布勻稱(chēng)的球體間的相互作用,可用該公式計(jì)算,其中r是兩個(gè)球體球心間的距離.(2)一個(gè)勻稱(chēng)球體與球外一個(gè)質(zhì)點(diǎn)間的萬(wàn)有引力,可用公式計(jì)算,其中r為球心到質(zhì)點(diǎn)間的距離.2.萬(wàn)有引力的“四性”四性內(nèi)容普遍性萬(wàn)有引力不僅存在于太陽(yáng)與行星、地球與月球之間,宇宙間任何兩個(gè)有質(zhì)量的物體之間都存在著這種相互吸引的力相互性兩個(gè)有質(zhì)量的物體之間的萬(wàn)有引力是一對(duì)作用力和反作用力,依據(jù)牛頓第三定律,總是滿意大小相等,方向相反,分別作用在兩個(gè)物體上宏觀性地面上的一般物體之間的萬(wàn)有引力比較小,與其他力比較可忽視不計(jì),但在質(zhì)量巨大的天體之間或天體與其旁邊的物體之間,萬(wàn)有引力起著確定性作用特別性兩個(gè)物體之間的萬(wàn)有引力只與它們本身的質(zhì)量和它們之間的距離有關(guān),而與所在空間的運(yùn)動(dòng)性質(zhì)無(wú)關(guān),也與四周是否存在其他物體無(wú)關(guān)【例1】已知地球的赤道半徑rE=6.37×103km,地球的質(zhì)量mE=5.977×1024kg.設(shè)地球?yàn)閯蚍Q(chēng)球體.(1)若兩個(gè)質(zhì)量都為1kg的勻稱(chēng)球體相距1m,求它們之間的萬(wàn)有引力;(2)質(zhì)量為1kg的物體在地面上受到地球的萬(wàn)有引力為多大?思路點(diǎn)撥:解此題的關(guān)鍵是理解公式F=Geq\f(m1m2,r2)中各符號(hào)的意義.[解析](1)由萬(wàn)有引力定律的公式可得兩個(gè)球體之間的引力為F=Geq\f(m1m2,r2)=6.67×10-11×eq\f(1×1,12)N=6.67×10-11N.(2)將地球近似為一勻稱(chēng)球體,便可將地球看作一質(zhì)量集中于地心的質(zhì)點(diǎn);而地面上的物體的大小與它到地心的距離(地球半徑rE)相比甚小,也可視為質(zhì)點(diǎn).因此,可利用萬(wàn)有引力定律的公式求得地面上的物體受到地球的引力為F′=Geq\f(mEm,r\o\al(2,E))=6.67×10-11×eq\f(5.977×1024×1,6.37×1062)N=9.8N.[答案](1)6.67×10-11N(2)9.8N萬(wàn)有引力定律的應(yīng)用方法1.首先分析能否滿意用F=Geq\f(m1m2,r2)公式求解萬(wàn)有引力的條件.2.明確公式中各物理量的大?。?.利用萬(wàn)有引力公式求解引力的大小及方向.3.已知太陽(yáng)的質(zhì)量M=2.0×1030kg,地球的質(zhì)量m=6.0×1024kg,太陽(yáng)與地球相距r=1.5×1011m,(比例系數(shù)G=6.67×10-11N·m2/kg2)求:(1)太陽(yáng)對(duì)地球的引力大??;(2)地球?qū)μ?yáng)的引力大小.[解析](1)太陽(yáng)與地球之間的引力跟太陽(yáng)的質(zhì)量成正比、跟地球的質(zhì)量成正比,跟它們之間的距離的二次方成反比,則F=Geq\f(Mm,r2)=eq\f(6.67×10-11×2.0×1030×6.0×1024,1.5×10112)N=3.56×1022N.(2)地球?qū)μ?yáng)的引力與太陽(yáng)對(duì)地球的引力是作用力與反作用力,由牛頓第三定律可知F′=F=3.56×1022N.[答案](1)3.56×1022N(2)3.56×1022N引力常量的測(cè)定及意義1.天體質(zhì)量的計(jì)算:下面以計(jì)算地球的質(zhì)量為例,介紹兩種方法.方法1:已知月球(地球的衛(wèi)星)繞地球運(yùn)動(dòng)的周期T和軌道半徑r,可計(jì)算出地球的質(zhì)量M.由Geq\f(Mm,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))eq\s\up20(2)r得M=eq\f(4π2r3,GT2).方法2:已知地球的半徑R和地球表面的重力加速度g,可求得地球的質(zhì)量.不考慮地球自轉(zhuǎn),地面上質(zhì)量為m的物體所受的重力等于地球?qū)ξ矬w的萬(wàn)有引力,即mg=eq\f(GMm,R2),M=geq\f(R2,G).2.計(jì)算天體的密度(1)若天體的半徑為R,則天體的密度ρ=eq\f(M,\f(4,3)πR3)將M=eq\f(4π2r3,GT2)代入上式得:ρ=eq\f(3πr3,GT2R3)當(dāng)衛(wèi)星環(huán)繞天體表面運(yùn)動(dòng)時(shí),其軌道半徑r等于天體半徑R,則ρ=eq\f(3π,GT2).(2)已知天體表面上的重力加速度為g,則ρ=eq\f(M,\f(4,3)πR3)=eq\f(\f(gR2,G),\f(4,3)πR3)=eq\f(3g,4πRG).【例2】已知引力常量G=6.67×10-11N·m2/kg2,日地球心的距離r=1.49×1011m.(1)試估算太陽(yáng)的質(zhì)量;(2)若萬(wàn)有引力常量未知,而已知地球質(zhì)量m=6.0×1024kg,地球半徑R=6.4×106m,地球表面重力加速度g=9.8m/s2,試求出太陽(yáng)質(zhì)量.思路點(diǎn)撥:(1)試分析地球繞太陽(yáng)的運(yùn)動(dòng)滿意的規(guī)律:①地球繞太陽(yáng)做勻速圓周運(yùn)動(dòng).②地球繞太陽(yáng)的公轉(zhuǎn)周期為1年.(2)若不考慮地球自轉(zhuǎn),地面上的物體所受重力等于物體和地球間的萬(wàn)有引力.[解析](1)由牛頓其次定律和萬(wàn)有引力定律,有Geq\f(Mm,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))eq\s\up20(2)r,可得M=eq\f(4π2r3,GT2),其中M是太陽(yáng)的質(zhì)量,r是地球繞太陽(yáng)公轉(zhuǎn)半徑,T是地球公轉(zhuǎn)周期,m是地球質(zhì)量,則M=eq\f(4×3.142×1.49×10113,6.67×10-11×365×24×36002)kg≈1.97×1030kg.(2)已知Geq\f(Mm,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))eq\s\up20(2)r①對(duì)地球表面的物體有m′g=Geq\f(mm′,R2),即Gm=gR2②由①②得M=eq\f(4π2r3m,gR2T2)=eq\f(4×3.142×1.49×10113×6.0×1024,9.8×6.4×1062×365×24×36002)kg≈1.96×1030kg.[答案](1)1.97×1030kg(2)1.96×1030kg求解天體質(zhì)量時(shí)應(yīng)明確的問(wèn)題萬(wàn)有引力定律和圓周運(yùn)動(dòng)學(xué)問(wèn)的結(jié)合,應(yīng)用牛頓運(yùn)動(dòng)定律解決天體問(wèn)題是特別典型的一種題型.解答此類(lèi)問(wèn)題應(yīng)明確以下三點(diǎn):1.利用天體運(yùn)動(dòng)求解天體質(zhì)量時(shí),只能將被求天體作為中心天體,所探討的環(huán)繞天體的運(yùn)動(dòng)近似為勻速圓周運(yùn)動(dòng)進(jìn)行求解.2.由于向心力表達(dá)式較多,要依據(jù)已知條件選擇合適的公式求解.3.正確理解向心力表達(dá)式中的r的含義,它不是環(huán)繞天體到中心天體表面的距離,而是環(huán)繞天體球心到中心天體球心的距離.4.“嫦娥一號(hào)”是我國(guó)首次放射的探月衛(wèi)星,它在距月球表面高度為200km的圓形軌道上運(yùn)行,運(yùn)行周期為127分鐘.已知引力常量G=6.67×10-11N·m2/kg2,月球半徑約為1.74×103km.利用以上數(shù)據(jù)估算月球的質(zhì)量約為()A.8.1×1010kgB.7.4×1013kgC.5.4×1019kg D.7.4×1022kgD[設(shè)探月衛(wèi)星的質(zhì)量為m,月球的質(zhì)量為M,依據(jù)萬(wàn)有引力供應(yīng)向心力Geq\f(mM,R+h2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))2(R+h),將h=200000m,T=127×60s,G=6.67×10-11N·m2/kg2,R=1.74×106m,代入上式解得M=7.4×1022kg,可知D選項(xiàng)正確.]1.(多選)如圖所示,對(duì)開(kāi)普勒第肯定律的理解.下列說(shuō)法中正確的是()A.在行星繞太陽(yáng)運(yùn)動(dòng)一周的時(shí)間內(nèi),它到太陽(yáng)的距離是不變的B.太陽(yáng)系中的全部行星有一個(gè)共同的軌道焦點(diǎn)C.一個(gè)行星繞太陽(yáng)運(yùn)動(dòng)的軌道肯定是在某一固定的平面內(nèi)D.行星的運(yùn)動(dòng)方向總是與它和太陽(yáng)的連線垂直BC[依據(jù)開(kāi)普勒第肯定律(軌道定律)的內(nèi)容可以判定:行星繞太陽(yáng)運(yùn)動(dòng)的軌道是橢圓,太陽(yáng)處于橢圓的一個(gè)焦點(diǎn)上,行星有時(shí)遠(yuǎn)離太陽(yáng),有時(shí)靠近太陽(yáng),其軌道在某一確定平面內(nèi),運(yùn)動(dòng)方向并不總是與它和太陽(yáng)的連線垂直.故A、D錯(cuò)誤,B、C正確.]2.(2024·全國(guó)卷Ⅱ)2024年1月,我國(guó)嫦娥四號(hào)探測(cè)器勝利在月球背面軟著陸.在探測(cè)器“奔向”月球的過(guò)程中,用h表示探測(cè)器與地球表面的距離,F(xiàn)表示它所受的地球引力,能夠描述F隨h變更關(guān)系的圖像是()ABCDD[在嫦娥四號(hào)探測(cè)器“奔向”月球的過(guò)程中,依據(jù)萬(wàn)有引力定律,可知隨著h的增大,探測(cè)器所受的地球引力漸漸減小但并不是勻稱(chēng)減小的,故能夠描述F隨h變更關(guān)系的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 衛(wèi)生院預(yù)防接種制度
- 一般潔凈區(qū)衛(wèi)生管理制度
- 衛(wèi)生院物資儲(chǔ)備管理制度
- 紙品廠衛(wèi)生管理制度
- 燒鹵攤衛(wèi)生管理制度
- 衛(wèi)生室新型農(nóng)合工作制度
- 一年級(jí)考核班級(jí)衛(wèi)生制度
- 衛(wèi)生院防艾工作制度
- 手衛(wèi)生管理規(guī)章制度
- 值班室衛(wèi)生保健制度
- 630KVA箱變安裝工程施工設(shè)計(jì)方案
- 山西省金科新未來(lái)2024-2025學(xué)年高一上學(xué)期期末考試化學(xué)試題(含答案)
- 電氣檢測(cè)安全報(bào)告
- 第四屆全國(guó)儀器儀表行業(yè)職業(yè)技能競(jìng)賽-無(wú)人機(jī)裝調(diào)檢修工(儀器儀表檢測(cè))理論考試題庫(kù)(含答案)
- 國(guó)家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 4-10-01-05 養(yǎng)老護(hù)理員 人社廳發(fā)201992號(hào)
- 急性梗阻性化膿性膽管炎護(hù)理
- 2024深海礦產(chǎn)資源開(kāi)采系統(tǒng)技術(shù)指南
- 2022通達(dá)經(jīng)營(yíng)性物業(yè)貸調(diào)查報(bào)告
- 立式氣液分離器計(jì)算
- 財(cái)務(wù)每日工作匯報(bào)表格
- 2022-2023學(xué)年廣東省佛山市南海區(qū)、三水區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷含解析
評(píng)論
0/150
提交評(píng)論