難點解析-云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編專項測試試卷(含答案詳解)_第1頁
難點解析-云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編專項測試試卷(含答案詳解)_第2頁
難點解析-云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編專項測試試卷(含答案詳解)_第3頁
難點解析-云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編專項測試試卷(含答案詳解)_第4頁
難點解析-云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編專項測試試卷(含答案詳解)_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省彌勒市中考數(shù)學(xué)真題分類(勾股定理)匯編專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在水塔O的東北方向24m處有一抽水站A,在水塔的東南方向18m處有一建筑工地B,在AB間建一條直水管,則水管AB的長為(

)A.40m B.45m C.30m D.35m2、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm3、如圖,三角形紙片ABC,點D是BC邊上一點,連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點G,連接BE交AD于點F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點F到BC的距離為()A. B. C. D.4、如圖,在中,,,,平分交于D點,E,F(xiàn)分別是,上的動點,則的最小值為(

)A. B. C.3 D.5、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點,直線l經(jīng)過點D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.36、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于(

)A.29 B.32 C.36 D.457、為⊙外一點,與⊙相切于點,,,則的長為(

)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時間后,到達(dá)位于燈塔P的北偏東方向上的B處,此時B處與燈塔P的距離為___________海里(結(jié)果保留根號).2、如圖,學(xué)校有一塊長方形草坪,有極少數(shù)人為了避開拐角走“捷徑”,在草坪內(nèi)走出了一條“路”,他們僅僅少走了________步路(假設(shè)步為米),卻踩傷了花草.3、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.4、我國古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設(shè)繩索的長為尺,根據(jù)題意,可列方程為__________.5、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請你寫出有以上規(guī)律的第⑤組勾股數(shù):________.6、勘測隊按實際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.7、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D.E為線段BD上一點,連結(jié)CE,將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上.若AB=10,BC=8,則△ACE的面積為________.8、如圖所示,數(shù)軸上點A所表示的數(shù)為_______.三、解答題(7小題,每小題10分,共計70分)1、如圖,將RtABC紙片沿AD折疊,使直角頂點C與AB邊上的點E重合,若AB=10cm,AC=6cm,求線段BD的長.2、超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹林路段,嘗試用自己所學(xué)的知識檢測車速,觀測點設(shè)在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?3、如圖,AD是△ABC的中線,DE⊥AC于點E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.4、我們知道,到線段兩端距離相等的點在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準(zhǔn)外心.(1)如圖1,點P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長.5、數(shù)學(xué)中,常對同一個量(圖形的面積、點的個數(shù)等)用兩種不同的方法計算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖2的方式拼成一個正方形.①用“算兩次”的方法計算圖2中陰影部分的面積:第一次列式為,第二次列式為,因為兩次所列算式表示的是同一個圖形的面積,所以可以得出等式;②在①中,如果,,請直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個邊長分別為,,的直角三角形和一個兩條直角邊都是的直角三角形拼成一個梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.6、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?7、如圖,某港口位于東西方向的海岸線上.“遠(yuǎn)航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后分別位于點Q,R處,且相距30海里.如果知道“遠(yuǎn)航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?-參考答案-一、單選題1、C【解析】【分析】由題意可知東北方向和東南方向間剛好是一直角,利用勾股定理解圖中直角三角形即可.【詳解】解:∵OA是東北方向,OB是東南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故選:C.【考點】本題考查的知識點是解直角三角形的應(yīng)用,正確運(yùn)用勾股定理,善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.2、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.3、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點F到BC的距離為.故選:C【考點】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.4、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點C到AB的垂線段長度.【詳解】在AB上取一點G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點共線時,符合要求,此時,作CH⊥AB于H點,則CH的長即為CE+EG的最小值,此時,,∴CH==,即:CE+EF的最小值為,故選:D.【考點】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.5、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進(jìn)行計算即可.【詳解】解:如圖,過點C作CK⊥l于點K,過點A作AH⊥BC于點H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點D為BC中點,∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點C作CN⊥AE于點N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當(dāng)直線l⊥AC時,最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.6、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點】本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運(yùn)用勾股定理求出MC2和MB2是本題的難點,重點還是在于勾股定理的熟練掌握.7、A【解析】【分析】連接OT,根據(jù)切線的性質(zhì)求出求,結(jié)合利用含的直角三角形的性質(zhì)求出OT,再利用勾股定理求得PT的長度即可.【詳解】解:連接OT,如下圖.∵與⊙相切于點,∴.∵,,∴,∴.故選:A.【考點】本題考查了切線的性質(zhì),含的直角三角形的性質(zhì),勾股定理,求出OT的長度是解答關(guān)鍵.二、填空題1、.【解析】【分析】先作PC⊥AB于點C,然后利用勾股定理進(jìn)行求解即可.【詳解】解:如圖,作PC⊥AB于點C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點】此題主要考查了勾股定理的應(yīng)用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為用勾股定理解決問題,解決的方法就是作高線.2、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據(jù)勾股定理求得AB的長即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關(guān)鍵.3、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.4、x2?(x?3)2=82【解析】【分析】設(shè)繩索長為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.5、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,計算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設(shè)第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點】本題考查了數(shù)字類規(guī)律,勾股定理等知識.解題的關(guān)鍵在于推導(dǎo)規(guī)律.6、

20

13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點的縱坐標(biāo)相同即可求出AB的長度;(2)根據(jù)A、B、C三點的坐標(biāo)可求出CE與AE的長度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標(biāo)相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點的坐標(biāo)求出相關(guān)線段的長度,本題屬于中等題型.7、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點B的對稱點B'落在CD的延長線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點】本題考查直角三角形中的折疊問題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.8、【解析】【分析】根據(jù)數(shù)軸上點的特點和相關(guān)線段的長,結(jié)合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點A所表示的數(shù)為:.故答案為:.【考點】本題考查實數(shù)與數(shù)軸之間的對應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關(guān)鍵.三、解答題1、5【解析】【分析】利用勾股定理先求出的值,根據(jù)折疊的性質(zhì)可得出,,,設(shè),列方程求解即可.【詳解】解:由題意可知:,,則,,,設(shè),則,∴解方程得:因此,的長為所以,【考點】本題考查的知識點是勾股定理的應(yīng)用,根據(jù)題意構(gòu)造直角三角形是解此題的關(guān)鍵.2、此車超過每小時80千米的限制速度.【解析】【分析】首先,根據(jù)在直角三角形BPO中,∠BPO=45°,可得到BO=PO=100m,再根據(jù)在直角三角形APO中,∠APO=60°,運(yùn)用三角函數(shù)值,可得到AO=100,根據(jù)AB=AO-BO可求得AB的長;再結(jié)合速度的計算方法,求出車的速度,然后將車的速度與80千米/時進(jìn)行比較,即可得到結(jié)論.【詳解】解:在Rt△APO中,∠APO=60°,則∠PAO=30°.∴AP=2OP=200m,AO===100(m).在Rt△BOP中,∠BPO=45°,則BO=OP=100m.∴AB=AO-BO=100-100≈73(m).∴從A到B小車行駛的速度為73÷3≈24.3(m/s)=87.48km/h>80km/h.∴此車超過每小時80千米的限制速度.【考點】本題考查了解直角三角形的應(yīng)用,從復(fù)雜的實際問題中整理出直角三角形并求解是解決此類題目的關(guān)鍵.3、(1)見解析(2)DF的長為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.(1)證明:∵DE⊥AC于點E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點F是邊AB的中點,∴DF=AB=5.∴DF的長為5.【考點】本題主要考查了直角三角形的性質(zhì)與判定,垂直平分線的判定和的性質(zhì),熟記勾股定理與逆定理是解答本題的關(guān)鍵.4、(1)見解析;(2)AP的長為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點P是△APD的準(zhǔn)外心;(2)先利用勾股定理計算AC=4,再進(jìn)行討論:當(dāng)P點在AB上,PA=PB,當(dāng)P點在AC上,PA=PC,易得對應(yīng)AP的值;當(dāng)P點在AC上,PB=PC,設(shè)AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時AP的長.【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點P是△APD的準(zhǔn)外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當(dāng)P點在AB上,PA=PB,則APAB;當(dāng)P點在AC上,PA=PC,則APAC=2,當(dāng)P點在AC上,PB=PC,如圖2,設(shè)AP=t,則PC=PB=4﹣x,在Rt△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論