版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
海南省瓊海市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、在四邊形ABCD中,如果∠B+∠C=180°,那么
()A.AB∥CD B.AD∥BC C.AB與CD相交 D.AB與DC垂直2、如圖,結(jié)合圖形作出了如下判斷或推理:①如圖甲,如果,為垂足,那么點(diǎn)到的距離等于,兩點(diǎn)間的距離;②如圖乙,如果,那么;③如圖丙,如果,,那么;④如圖丁,如果,,那么.其中正確的有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一點(diǎn),將ACD沿CD翻折后得到CED,邊CE交AB于點(diǎn)F.若DEF中有兩個(gè)角相等,則∠ACD的度數(shù)為(
)A.15°或20° B.20°或30° C.15°或30° D.15°或25°4、如圖,,的角平分線交于點(diǎn),若,,則的度數(shù)(
)A. B. C. D.5、如圖,直線,等邊三角形的頂點(diǎn)、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(
)A. B. C. D.6、如圖,下列推理正確的是(
)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴7、如圖,在△ABC中,∠A=90°,BE,CD分別平分∠ABC和∠ACB,且相交于F,,于點(diǎn)G,則下列結(jié)論①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正確的結(jié)論是(
)A.①②③ B.①③④ C.①③④⑤ D.①②③④8、如圖,已知△ABC中,BD、CE分別是△ABC的角平分線,BD與CE交于點(diǎn)O,如果設(shè)∠BAC=n°(0<n<180),那么∠BOE的度數(shù)是()A.90°n° B.90°n° C.45°+n° D.180°﹣n°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、把“對(duì)頂角相等”改寫成“如果…那么…”的形式____________________________________________.2、如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長(zhǎng)線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.3、如圖,將一張三角形紙片ABC的一角(∠A)折疊,使得點(diǎn)A落在四邊形BCDE的外部點(diǎn)的位置,且點(diǎn)與點(diǎn)C在直線AB的異側(cè),折痕為DE.已知,,若的一邊與BC平行,且,則m=______.4、如圖,下列條件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5,能判定AB∥CD的條件個(gè)數(shù)有__個(gè).5、如圖,點(diǎn)D是△ABC兩條角平分線AP、CE的交點(diǎn),如果∠BAC+∠BCA=140°,那么∠ADC=_____°.6、如圖,在中,,將沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,則__________.7、下圖是某工人加工的一個(gè)機(jī)器零件(數(shù)據(jù)如圖),經(jīng)過測(cè)量不符合標(biāo)準(zhǔn).標(biāo)準(zhǔn)要求是:,且、、保持不變?yōu)榱诉_(dá)到標(biāo)準(zhǔn),工人在保持不變情況下,應(yīng)將圖中____(填“增大”或“減小”)_____度.三、解答題(7小題,每小題10分,共計(jì)70分)1、完成下列推理過程:已知:如圖,∠1+∠2=180°,∠3=∠B求證:∠EDG+∠DGC=180°證明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()2、如圖,已知,垂足為點(diǎn)N,與交于點(diǎn)M.求證:.(用反證法證明)3、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).4、如圖,在△ABC中,D是BC邊上的一點(diǎn),AB=DB,BE平分∠ABC,交AC邊于點(diǎn)E,連接DE.(1)求證:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).5、如圖所示,已知BO、CO分別是∠ABC與∠ACB的平分線,DE過O點(diǎn)且與BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大??;(2)若∠A=60°,求∠BOC的大小;(3)直接寫出∠A與∠BOC的關(guān)系是∠BOC=.(用∠A表示出來(lái))6、如圖,AB//CD,AE平分∠BAD,CD與AE相交于F,∠CFE=∠E.求證:AD//BC.7、如圖,BD⊥AC于點(diǎn)D,EF⊥AC于點(diǎn)F,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC的度數(shù);(2)求證:DM∥BC.-參考答案-一、單選題1、A【解析】【分析】∠B與∠C是直線AB,CD被直線BC所截構(gòu)成的同旁內(nèi)角,根據(jù)∠B+∠C=180°,得到AB∥CD.【詳解】∵∠B+∠C=180°,∴AB∥CD(同旁內(nèi)角互補(bǔ),兩直線平行).故選A.【考點(diǎn)】正解找出“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補(bǔ)關(guān)系的角就誤認(rèn)為具有平行關(guān)系,只有同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.2、B【解析】【分析】根據(jù)點(diǎn)到直線的距離及兩點(diǎn)間的距離的定義可判斷①;根據(jù)平行線的性質(zhì)及三角形的外角的性質(zhì)可判斷②;根據(jù)平行線的判定可判斷③;根據(jù)平行線的判定與性質(zhì)可判斷④.【詳解】解:①由于直線外一點(diǎn)到直線的垂線段的長(zhǎng)度,叫做這點(diǎn)到這條直線的距離,故正確;②設(shè)AB與DE相交于點(diǎn)O.∵AB∥CD,∴∠AOE=∠D.又∵∠AOE>∠B,∴∠D>∠B,故錯(cuò)誤;③∵∠ACD=∠CAB,∴AB∥CD,,故錯(cuò)誤;④∵∠1=∠2,∴AD∥BC,∴∠D+∠BCD=180°,又∵∠D=120°,∴∠BCD=60°,故正確.故選:B.【考點(diǎn)】本題主要考查了點(diǎn)到直線的距離的定義,平行線的判定與性質(zhì),三角形的外角的性質(zhì),正確理解相關(guān)概念和性質(zhì)是解本題的關(guān)鍵.3、C【解析】【分析】由三角形的內(nèi)角和定理可求解∠A=40°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,可分三種情況:當(dāng)∠DFE=∠E=40°時(shí);當(dāng)∠FDE=∠E=40°時(shí);當(dāng)∠DFE=∠FDE時(shí),根據(jù)∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【詳解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,當(dāng)∠DFE=∠E=40°時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);當(dāng)∠FDE=∠E=40°時(shí),∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;當(dāng)∠DFE=∠FDE時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,綜上,∠ACD=15°或30°,故選:C.【考點(diǎn)】本題主要考查直角三角形的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,根據(jù)∠ADC=∠CDE分三種情況列方程是解題的關(guān)鍵.4、A【解析】【分析】法一:延長(zhǎng)PC交BD于E,設(shè)AC、PB交于F,根據(jù)三角形的內(nèi)角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質(zhì)得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長(zhǎng)DC,與AB交于點(diǎn)E.設(shè)AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計(jì)算即可.【詳解】解:法一:延長(zhǎng)PC交BD于E,設(shè)AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長(zhǎng)DC,與AB交于點(diǎn)E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點(diǎn)】本題主要考查對(duì)三角形的內(nèi)角和定理,三角形的外角性質(zhì),對(duì)頂角的性質(zhì),角平分線的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能熟練地運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.5、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計(jì)算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點(diǎn)】本題主要考查了平行線的性質(zhì),即兩直線平行內(nèi)錯(cuò)角相等以及兩直線平行同位角相等;明確平行線的性質(zhì)是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)平行線的判定判斷即可.【詳解】解:A、由∠2=∠4不能推出AD∥BC,故本選項(xiàng)錯(cuò)誤;B、∵∠1=∠3,∴AD∥BC,故本選項(xiàng)正確;C、由∠4+∠D=180°不能推出AD∥BC,故本選項(xiàng)錯(cuò)誤;D、由∠4+∠B=180°不能推出AD∥BC,故本選項(xiàng)錯(cuò)誤;故選:B.【考點(diǎn)】本題考查了平行線的判定的應(yīng)用,注意:同旁內(nèi)角互補(bǔ),兩直線平行,內(nèi)錯(cuò)角相等,兩直線平行.7、C【解析】【分析】根據(jù)平行線的性質(zhì)與角平分線的定義即可判斷①;只需要證明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判斷③;根據(jù)角平分線的定義和三角形內(nèi)角和定理先推出,即可判斷④⑤;根據(jù)現(xiàn)有條件無(wú)法推出②.【詳解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正確;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正確;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分別平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正確;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正確;根據(jù)現(xiàn)有條件,無(wú)法推出CA平分∠BCG,故②錯(cuò)誤;故選C.【考點(diǎn)】本題主要考查了平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,熟知平行線的性質(zhì),角平分線的定義是解題的關(guān)鍵.8、A【解析】【分析】根據(jù)BD、CE分別是△ABC的角平分線和三角形的外角,得到,再利用三角形的內(nèi)角和,得到,代入數(shù)據(jù)即可求解.【詳解】解:∵BD、CE分別是△ABC的角平分線,∴,,∴,∵,∴.故答案選:A.【考點(diǎn)】本題考查三角形的內(nèi)角和定理和外角的性質(zhì).涉及角平分線的性質(zhì).三角形的內(nèi)角和定理:三角形的內(nèi)角和等于.三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和.二、填空題1、如果兩個(gè)角是對(duì)頂角,那么它們相等【解析】【分析】先找到命題的題設(shè)和結(jié)論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個(gè)角是對(duì)頂角”,結(jié)論是:“它們相等”,∴命題“對(duì)頂角相等”寫成“如果…那么…”的形式為:“如果兩個(gè)角是對(duì)頂角,那么它們相等”.故答案為:如果兩個(gè)角是對(duì)頂角,那么它們相等.【考點(diǎn)】本題考查了命題的條件和結(jié)論的敘述,注意確定一個(gè)命題的條件與結(jié)論的方法是首先把這個(gè)命題寫成:“如果…,那么…”的形式.2、15°##15度【解析】【分析】先由BD、CD分別平分∠ABC、∠ACB得到∠DBC=∠ABC,∠DCB=∠ACB,在△ABC中根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=60°,則根據(jù)平角定理得到∠MBC+∠NCB=300°;再由BE、CE分別平分∠MBC、∠BCN得∠5+∠6=∠MBC,∠1=∠NCB,兩式相加得到∠5+∠6+∠1=(∠NCB+∠NCB)=150°,在△BCE中,根據(jù)三角形內(nèi)角和定理可計(jì)算出∠E=30°;再由BF、CF分別平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根據(jù)三角形外角性質(zhì)得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代換得到∠2=∠5+∠F,2∠2=2∠5+∠E,再進(jìn)行等量代換可得到∠F=∠E.【詳解】解:如圖:∵BD、CD分別平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分別平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分別平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故答案為:15°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理、角平分線、三角形外角性質(zhì),解題的關(guān)鍵是掌握三角形內(nèi)角和是180°.3、45或30【解析】【分析】分類討論①當(dāng)時(shí)、②當(dāng)時(shí)和③當(dāng)時(shí),根據(jù)平行線的性質(zhì),折疊的性質(zhì)結(jié)合題意即可求解.【詳解】解:分類討論,①如圖,當(dāng)時(shí),∵,∴.∴由翻折可知,∴m=45;②如圖,當(dāng)時(shí),∵,∴.∵,∴由折疊可知,∴,∴,∴,∴m=30;③當(dāng)時(shí),點(diǎn)與點(diǎn)C在直線AB的同側(cè),不符合題意.綜上可知m的值為45或30.故答案為:45或30.【考點(diǎn)】本題主要考查平行線的性質(zhì),折疊的性質(zhì).利用分類討論的思想是解題關(guān)鍵.4、3【解析】【分析】根據(jù)平行線的判定定理即可判斷.【詳解】解:(1)∠B+∠BCD=180°,則AB∥CD;(2)∠1=∠2,則AD∥BC;(3)∠3=∠4,則AB∥CD;(4)∠B=∠5,則AB∥CD,故能判定AB∥CD的條件個(gè)數(shù)有3個(gè).故答案為:3.【考點(diǎn)】本題主要考查了平行線的判定,同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行.5、110【解析】【分析】根據(jù)CE,AP分別平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根據(jù)三角形內(nèi)角和定理,求出∠ADC即可.【詳解】解:∵CE,AP分別平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案為:110.【考點(diǎn)】本題考查了角平分線的性質(zhì)和三角形內(nèi)角和定理,熟練掌握了角平分線的性質(zhì)是解題的關(guān)鍵.6、【解析】【分析】根據(jù)折疊得出∠D=∠B=28°,根據(jù)三角形的外角性質(zhì)得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點(diǎn)】本題考查了三角形的外角性質(zhì)和折疊的性質(zhì),能熟記三角形的外角性質(zhì)是解此題的關(guān)鍵,注意:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.7、
減小
15【解析】【分析】延長(zhǎng)EF到H與CD交于H,先利用對(duì)頂角的性質(zhì)和三角形內(nèi)角和定理求出DCE=60°,然后根據(jù)三角形外角的性質(zhì)得到∠DHE=∠E+∠DCE=100°,∠DFE=∠D+∠DHF,由此求解即可.【詳解】解:如圖,延長(zhǎng)EF到H與CD交于H,∵∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∴∠DCE=60°,∴∠DHE=∠E+∠DCE=100°,∵∠DFE=∠D+∠DHF,∴∠D=∠DFE-∠DHF=120°-100°=20°,∴∠D從35°減小到20°,減小了15°,故答案為:減小,15.【考點(diǎn)】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),對(duì)頂角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.三、解答題1、鄰補(bǔ)角定義;∠DFE,同角的補(bǔ)角相等;內(nèi)錯(cuò)角相等,兩直線平行;∠ADE,兩直線平行,內(nèi)錯(cuò)角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ)【解析】【分析】依據(jù)∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由內(nèi)錯(cuò)角相等,兩直線平行證明EF∥AB,則∠3=∠ADE,再根據(jù)∠3=∠B,由同位角相等,兩直線平行證明DE∥BC,故可根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可得出結(jié)論.【詳解】∵∠1+∠2=180°(已知)∠1+∠DFE=180°(鄰補(bǔ)角定義)∴∠2=∠DFE(同角的補(bǔ)角相等)∴EF∥AB(內(nèi)錯(cuò)角相等,兩直線平行)∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代換)∴DE∥BC(同位角相等,兩直線平行)∴∠EDG+∠DGC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))【考點(diǎn)】本題考查了平行線的性質(zhì)和判定.正確識(shí)別“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵.2、見解析.【解析】【分析】假設(shè)與不垂直,則,而,,則,這與相矛盾,由此即可證明.【詳解】證明:假設(shè)與不垂直,則,∵,∴,∴,這與相矛盾,∴.【考點(diǎn)】本題主要考查了反證法和平行線的性質(zhì),垂線的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.3、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點(diǎn)】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì).4、(1)見解析(2)∠AEB=65°【解析】【分析】(1)由角平分線可得∠ABE=∠DBE,再證△ABE≌△DBE即可;(2)根據(jù)三角形內(nèi)角和求出∠ABC=30°,再根據(jù)角平分線求出∠ABE=15°,根據(jù)三角形內(nèi)角和可求.(1)證明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.【考點(diǎn)】本題考查了全等三角形的判定、角平分線的定義以及三角形內(nèi)角和,掌握三角形全等的判定和運(yùn)用三角形內(nèi)角和求角度是解題的關(guān)鍵.5、(1)124°(2)120°(3)90°+【解析】【分析】(1)根據(jù)角平分線定義求出∠OBC=,∠OCB=,然后利用三角形內(nèi)角和公式求解即可;(2)根據(jù)∠A=60°,結(jié)合三角形內(nèi)角和得出∠ABC+∠ACB=180°-∠A=120°,然后根據(jù)角平分線得出∠OBC=,∠OCB=,再利用三角形內(nèi)角
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年高血壓患者家庭血壓監(jiān)測(cè)數(shù)據(jù)隱私保護(hù)方案
- 老年高血壓患者家庭血壓監(jiān)測(cè)下不同降壓藥物療效對(duì)比方案
- 建筑施工裝飾裝修施工安全管理制度
- 老年高血壓人工智能輔助決策支持系統(tǒng)方案
- 機(jī)關(guān)單位公務(wù)出差審批及報(bào)銷管理制度
- 老年骨質(zhì)疏松性骨折高危人群篩查方案
- 老年骨折患者的衰弱評(píng)估與干預(yù)
- 2025江西南昌市安義縣城市建設(shè)投資發(fā)展集團(tuán)有限公司招聘1人備考題庫(kù)及完整答案詳解1套
- 老年非霍奇金淋巴瘤診斷標(biāo)準(zhǔn):WHO個(gè)體化策略
- 老年跨境醫(yī)療倫理適應(yīng)策略
- 天貓店主體變更申請(qǐng)書
- 亞馬遜運(yùn)營(yíng)年終總結(jié)
- 航空運(yùn)輸延誤預(yù)警系統(tǒng)
- DLT 5142-2012 火力發(fā)電廠除灰設(shè)計(jì)技術(shù)規(guī)程
- 文化藝術(shù)中心管理運(yùn)營(yíng)方案
- 肩袖損傷臨床診療指南
- 2025年CFA二級(jí)《數(shù)量方法》真題及答案
- 消防志愿隊(duì)培訓(xùn)
- 小麥栽培課件
- 左額顳枕頂急性硬膜下血腫
- 2024-2025學(xué)年山東省濟(jì)南市槐蔭區(qū)七年級(jí)(上)期末地理試卷
評(píng)論
0/150
提交評(píng)論