2023山東省新泰市中考數(shù)學每日一練試卷及參考答案詳解(輕巧奪冠)_第1頁
2023山東省新泰市中考數(shù)學每日一練試卷及參考答案詳解(輕巧奪冠)_第2頁
2023山東省新泰市中考數(shù)學每日一練試卷及參考答案詳解(輕巧奪冠)_第3頁
2023山東省新泰市中考數(shù)學每日一練試卷及參考答案詳解(輕巧奪冠)_第4頁
2023山東省新泰市中考數(shù)學每日一練試卷及參考答案詳解(輕巧奪冠)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省新泰市中考數(shù)學每日一練試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.232、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關系的是()A. B.C. D.3、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內(nèi)繞點A旋轉到△AB′C′的位置,使CC′AB,則旋轉角的度數(shù)為()A.64° B.52° C.42° D.36°4、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形5、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書?。谋砻婢烧叫魏偷冗吶切谓M成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、在中,,,且關于x的方程有兩個相等的實數(shù)根,以下結論正確的是(

)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是22、如圖,拋物線過點,對稱軸是直線.下列結論正確的是(

)A.B.C.若關于x的方程有實數(shù)根,則D.若和是拋物線上的兩點,則當時,3、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應值如下表:x…-2-1012……tm22n…已知.則下列結論中,正確的是(

)A. B.和是方程的兩個根C. D.(s取任意實數(shù))4、觀察如圖推理過程,錯誤的是(

)A.因為的度數(shù)為,所以B.因為,所以C.因為垂直平分,所以D.因為,所以5、已知關于的方程,下列說法不正確的是(

)A.當時,方程無解 B.當時,方程有兩個相等的實數(shù)根C.當時,方程有兩個相等的實數(shù)根 D.當時,方程有兩個不相等的實數(shù)根第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉,點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.2、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.3、已知關于x的一元二次方程的一個根比另一個根大2,則m的值為_____.4、在平面直角坐標系中,將點A先向右平移4個單位,再向下平移6個單位得到點B,如果點A和點B關于原點對稱,那么點A的坐標是____________.5、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關系是__________.四、簡答題(2小題,每小題10分,共計20分)1、據(jù)說,在距今2500多年前,古希臘數(shù)學家就已經(jīng)較準確地測出了埃及金字塔的高度,操作過程大致如下:如圖所示,設AB是金字塔的高,在某一時刻,陽光照射下的金字塔在底面上投下了一個清晰的陰影,塔頂A的影子落在地面上的點C處,金字塔底部可看作方正形FGHI,測得正方形邊長FG長為160米,點B在正方形的中心,BC與金字塔底部一邊垂直于點K,與此同時,直立地面上的一根標桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時測得標桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結果均保留四個有效數(shù)字)2、某商場購進甲、乙兩種商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙兩種商品每箱各盈利多少元?(2)甲、乙兩種商品全部售完后,該商場又購進一批甲商品,在原每箱盈利不變的前提下,平均每天可賣出100箱.如調(diào)整價格,每降價1元,平均每天可以多賣出20箱,那么當降價多少元時,該商場利潤最大?最大利潤是多少?五、解答題(4小題,每小題10分,共計40分)1、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內(nèi)拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.2、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內(nèi),過A作軸于B,以為斜邊在其左側作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標.3、一張圓桌旁設有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.4、如圖,在中,AB是直徑,弦EF∥AB.(1)請僅用無刻度的直尺畫出劣弧EF的中點P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點Q,,,求PQ的長度.-參考答案-一、單選題1、A【分析】由題意可設盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=;頻率與概率的關系生:一般地,在大量的重復試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.2、A【分析】設正六邊形的邊長為1,當在上時,過作于而求解此時的函數(shù)解析式,當在上時,延長交于點過作于并求解此時的函數(shù)解析式,當在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設正六邊形的邊長為1,當在上時,過作于而當在上時,延長交于點過作于同理:則為等邊三角形,當在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應用,正多邊形的性質(zhì),清晰的分類討論是解本題的關鍵.3、B【分析】先根據(jù)平行線的性質(zhì)得∠ACC′=∠CAB=64°,再根據(jù)旋轉的性質(zhì)得∠CAC′等于旋轉角,AC=AC′,則利用等腰三角形的性質(zhì)得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內(nèi)角和定理可計算出∠CAC′的度數(shù),從而得到旋轉角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內(nèi)繞點A旋轉到△AB′C′的位置,∴∠CAC′等于旋轉角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉角為52°.故選:B.【點睛】本題考查了旋轉的性質(zhì):對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.4、D【分析】根據(jù)旋轉的性質(zhì)推出相等的邊CE=CF,旋轉角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉的性質(zhì),掌握圖形旋轉前后的大小和形狀不變是解決問題的關鍵.5、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關系以及視圖和實物之間的關系,同時還考查了對圖形的想象力,難度適中.二、多選題1、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).2、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側,∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關于x的方程有實數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)的性質(zhì),二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關鍵.3、BC【解析】【分析】由表中數(shù)據(jù),結合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結合拋物線對稱軸為:,得出,由,,結合二次函數(shù)圖象性質(zhì),逐一分析各個選項,即可作出相應的判斷.【詳解】解:由表格數(shù)據(jù)可知,當時,,將點代入中,可得.由表格數(shù)據(jù)可知,當時,;當時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應的函數(shù)值相等,∵時,對應函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關鍵.4、ABC【解析】【分析】A.

根據(jù)定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!笨傻?B.

根據(jù)定理“同圓或等圓中,相等的圓心角所對的弧相等?!笨傻?C.

根據(jù)“垂徑定理”及弦的定義可得.D.

根據(jù)“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中得到的四組量中有一組量相等,則對應的其余各組量也相等?!笨傻?【詳解】由定理“圓心角的度數(shù)等于它所對的弧的度數(shù)?!盇.∵的度數(shù)是∴,故選項A錯誤.B.

由定理“同圓中相等的圓心角所對的弧相等?!保珺選項題干中不是同一個圓,故選項B錯誤.C.

由“垂徑定理:垂直于弦(非直徑)的直徑平分這條弦,并且平分弦所對的兩條弧。沒有過圓心,不是直徑,并且,根據(jù)弦的定義,不是圓O的弦,因此無法判斷,故選項C錯誤.D.

∵∴即由定理“在同圓或等圓中,若兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中有一組量相等,則對應的其余各組量也相等。”所以,故選項D正確.【考點】本題旨在考查圓,圓心角,所對應的圓弧及弦的相關定義及性質(zhì)定理,熟練掌握圓的相關定理是解題的關鍵.5、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.三、填空題1、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關鍵.2、2【解析】【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點E的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當x=0時,y=x+1=1,∴點E的坐標為(0,1).當y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,利用二次函數(shù)圖象上點的坐標特征求出點P,Q的坐標是解題的關鍵.3、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關鍵是熟知因式分解法的運用.4、【解析】【分析】先按題目要求對A、B點進行平移,再根據(jù)原點對稱的特征:橫縱坐標互為相反數(shù)進行列方程,求解.【詳解】設,向右平移4個單位,再向下平移6個單位得到∵A、B關于原點對稱,∴,,解得,,∴故答案為:【考點】本題考查點的平移和原點對稱的性質(zhì),掌握這些是解題關鍵.5、相切【分析】過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關系是相切.【詳解】解:過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關系是相切.故答案為:相切.【點睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關鍵.四、簡答題1、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據(jù)同一時刻物高與影長成正比例列式計算即可.【詳解】解:∵FGHI是正方形,點B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據(jù)同一時刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點】本題考查了相似三角形的應用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關鍵是找到各部分以及與其對應的影長.2、(1)甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)當降價5元時,該商場利潤最大,最大利潤是2000元.【解析】【分析】(1)設甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據(jù)題意列出方程,解方程即可得出結論;(2)設甲種商品降價a元,則每天可多賣出20a箱,利潤為w元,根據(jù)題意列出函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最值.【詳解】解:(1)設甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據(jù)題意得:,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),經(jīng)檢驗,x=15是原分式方程的解,符合實際,∴x-5=15-5=10(元),答:甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)設甲種商品降價a元,則每天可多賣出20a箱,利潤為w元,由題意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,∵a=-20,當a=5時,函數(shù)有最大值,最大值是2000元,答:當降價5元時,該商場利潤最大,最大利潤是2000元.【考點】本題考查了分式方程及二次函數(shù)的應用,解題的關鍵是理解題意,找出等量關系,準確列出分式方程及函數(shù)關系式.五、解答題1、(1);(2);(3)面積最大為,點坐標為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質(zhì)可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關于直線對稱,當點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設,則,當時,面積最大為,此時點坐標為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標為(,),(,),(,)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論