2023云南省彌勒市中考數(shù)學(xué)自我提分評估及答案詳解(歷年真題)_第1頁
2023云南省彌勒市中考數(shù)學(xué)自我提分評估及答案詳解(歷年真題)_第2頁
2023云南省彌勒市中考數(shù)學(xué)自我提分評估及答案詳解(歷年真題)_第3頁
2023云南省彌勒市中考數(shù)學(xué)自我提分評估及答案詳解(歷年真題)_第4頁
2023云南省彌勒市中考數(shù)學(xué)自我提分評估及答案詳解(歷年真題)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省彌勒市中考數(shù)學(xué)自我提分評估考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在不透明口袋內(nèi)裝有除顏色外完全相同的5個小球,其中紅球2個,白球3個.?dāng)嚢杈鶆蚝?,隨機抽取一個小球,是紅球的概率為()A. B. C. D.2、下列事件是隨機事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天3、如圖1,矩形中,點為的中點,點沿從點運動到點,設(shè),兩點間的距離為,,圖2是點運動時隨變化的關(guān)系圖象,則的長為(

)A. B. C. D.4、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當(dāng)水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當(dāng)水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米5、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①4a+2b+c>0

;②y隨x的增大而增大;③方程ax2+bx+c=0兩根之和小于零;④一次函數(shù)y=ax+bc的圖象一定不過第二象限,其中正確的個數(shù)是(

)A.4個 B.3個 C.2個 D.1個二、多選題(5小題,每小題3分,共計15分)1、在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象不可能是()A. B.C. D.2、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結(jié)論正確的是(

)A.a(chǎn)+b+c<0B.a(chǎn)bc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<43、下面的圖形中,繞著一個點旋轉(zhuǎn)120°后,能與原來的位置重合的是(

)A. B. C. D.4、如圖,是的直徑,,是上的點,且,分別與,相交于點,,則下列結(jié)論一定成立的是(

)A. B. C.平分D. E.5、下列方程一定不是一元二次方程的是(

)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,已知是的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.2、在平面直角坐標(biāo)系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.3、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.4、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.5、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設(shè)道路的寬為xm,則根據(jù)題意,可列方程為_______.四、簡答題(2小題,每小題10分,共計20分)1、拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(﹣1,0),點C的坐標(biāo)為(0,﹣3).點P為拋物線y=x2+bx+c上的一個動點.過點P作PD⊥x軸于點D,交直線BC于點E.(1)求b、c的值;(2)設(shè)點F在拋物線y=x2+bx+c的對稱軸上,當(dāng)△ACF的周長最小時,直接寫出點F的坐標(biāo);(3)在第一象限,是否存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍?若存在,求出點P所有的坐標(biāo);若不存在,請說明理由.2、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當(dāng)△OAB的面積為4時,求m的值.五、解答題(4小題,每小題10分,共計40分)1、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標(biāo)是-2,求此時m的值;(2)已知當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,求出這兩個定點的坐標(biāo).2、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?3、已知關(guān)于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個實數(shù)根都為正整數(shù),求這個方程的根.4、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個新圖象有且只有一個公共點時,d=;(2)當(dāng)直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當(dāng)直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當(dāng)直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.-參考答案-一、單選題1、A【分析】用紅球的個數(shù)除以所有球的個數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個球,其中紅球有2個,∴P(摸到紅球)=,故選:A.【點睛】此題主要考查概率的意義及求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內(nèi)角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關(guān)鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.3、C【解析】【分析】先利用圖2得出當(dāng)P點位于B點時和當(dāng)P點位于E點時的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點位于B點時,,即,當(dāng)P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學(xué)生對函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊含了數(shù)形結(jié)合的思想方法.4、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點A(b,0),則設(shè)頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標(biāo)為-7,∴點E坐標(biāo)為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當(dāng)x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.5、D【解析】【分析】根據(jù)函數(shù)的圖象可知x=2時,函數(shù)值的正負(fù)性;并且可知與x軸有兩個交點,即對應(yīng)方程有兩個實數(shù)根;函數(shù)的增減性需要找到其對稱軸才知具體情況;由函數(shù)的圖象還可知b、c的正負(fù)性,一次函數(shù)y=ax+bc所經(jīng)過的象限進(jìn)而可知正確選項.【詳解】∵當(dāng)x=2時,y=4a+2b+c,對應(yīng)的y值為正,即4a+2b+c>0,故①正確;∵因為拋物線開口向上,在對稱軸左側(cè),y隨x的增大而減??;在對稱軸右側(cè),y隨x的增大而增大,故②錯誤;∵由二次函數(shù)y=ax2+bx+c(a≠0)的圖象可知:函數(shù)圖象與x軸有兩個不同的交點,即對應(yīng)方程有兩個不相等的實數(shù)根,且正根的絕對值較大,∴方程ax2+bx+c=0兩根之和大于零,故③錯誤;∵由圖象開口向上,知a>0,與y軸交于負(fù)半軸,知c<0,由對稱軸,知b<0,∴bc>0,∴一次函數(shù)y=ax+bc的圖象一定經(jīng)過第二象限,故④錯誤;綜上,正確的個數(shù)為1個,故選:D.【考點】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系以及一次函數(shù)的圖象,利用了數(shù)形結(jié)合的思想,此類題涉及的知識面比較廣,能正確觀察圖象是解本題的關(guān)鍵.二、多選題1、ABD【解析】【分析】首先根據(jù)圖形中給出的一次函數(shù)圖象確定a、b的符號,進(jìn)而運用二次函數(shù)的性質(zhì)判斷圖形中給出的二次函數(shù)的圖象是否符合題意,根據(jù)選項逐一討論解析,即可解決問題.【詳解】A、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,對稱軸x=<0,應(yīng)在y軸的左側(cè),圖形錯誤,故符合題意.B、對于直線y=bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線來說,圖象應(yīng)開口向下,故不合題意,圖形錯誤,故符合題意.C、對于直線y=bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線來說,圖象開口向下,對稱軸x=位于y軸的右側(cè),圖形正確,故不符合題意,D、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,圖象開口向下,a<0,故不合題意,圖形錯誤,故符合題意.故選ABD.【考點】主要考查了一次函數(shù)、二次函數(shù)圖象的性質(zhì)及其應(yīng)用問題;解題的方法是首先根據(jù)其中一次函數(shù)圖象確定a、b的符號,進(jìn)而判斷另一個函數(shù)的圖象是否符合題意;解題的關(guān)鍵是靈活運用一次函數(shù)、二次函數(shù)圖象的性質(zhì)來分析、判斷、解答.2、ABD【解析】【分析】根據(jù)題意可得點A(﹣4,0)關(guān)于對稱軸的對稱點,從而得到當(dāng)時,,再由,可得在對稱軸右側(cè)隨的增大而增大,從而得到當(dāng)時,;根據(jù)圖象可得,,可得;再由,可得;然后根據(jù)P(﹣6,y1)關(guān)于對稱軸的對稱點,可得當(dāng)y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關(guān)于對稱軸的對稱點,即當(dāng)時,,∵拋物線開口向上,∴,∴在對稱軸右側(cè)隨的增大而增大,∴當(dāng)時,,故A正確;∵拋物線與交于負(fù)半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關(guān)于對稱軸的對稱點,∴當(dāng)y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),并利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.3、AB【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)對題中圖形進(jìn)行分析即可.【詳解】解:A、旋轉(zhuǎn)任意角度都與原圖形重合,故符合題意;B、旋轉(zhuǎn)最小的度數(shù)是120度與原圖形重合,故符合題意;C、旋轉(zhuǎn)最小的度數(shù)是72度(72度的整倍數(shù)都可以)與原圖形重合,則旋轉(zhuǎn)120度不能與原圖形重合,故不符合題意;D、旋轉(zhuǎn)最小的度數(shù)是90度(90度的整倍數(shù)都可以)與原圖形重合,則旋轉(zhuǎn)120度不能與原圖形重合,故不符合題意.故選AB.【考點】本題主要考查了圖形的旋轉(zhuǎn),理解旋轉(zhuǎn)的定義是解題的關(guān)鍵.4、ACDE【解析】【分析】根據(jù)直徑的性質(zhì),垂徑定理等知識一一判斷即可;【詳解】∵AB是直徑,∴∠ADB=90°,∴AD⊥BD,故A正確;∵C,D是⊙O上的點,∴與不一定相等,∴∠A與∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A與∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC與∠AEC不一定相等,故B選項錯誤;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正確∴∠ABC=∠CBD,即CB平分∠ABD,故C正確,∵AF=DF,AO=OB,∴BD=2OF,故E正確,故選:ACDE.【考點】本題考查直徑的性質(zhì)、垂徑定理、平行線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.5、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當(dāng)a=0時,不是一元二次方程,當(dāng)a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.三、填空題1、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.2、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時,OM也最小,即當(dāng)B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標(biāo)為(2,2),圓C與x軸相切于點A,∴點A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點,又∵M(jìn)是AB的中點,∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時,OM也最小,∴當(dāng)B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標(biāo)與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.3、2或-3##-3或2【解析】【分析】根據(jù)題意得到關(guān)于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關(guān)鍵.4、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.5、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構(gòu)成一個矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關(guān)于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點】本題考查了一元二次方程的應(yīng)用,關(guān)鍵將四個矩形用恰當(dāng)?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P(guān)系.四、簡答題1、(1)(2)(3)存在,P的坐標(biāo)為【解析】【分析】(1)把A、C點的坐標(biāo)代入拋物線的解析式列出b、c的方程組,解得b、c便可.(2)連接BC與對稱軸交于點F,此時ΔACF的周長最小,求得BC的解析式,再求得BC與對稱軸的交點坐標(biāo)便可.(3)設(shè)P(m,m2-2m-3)(m>3),根據(jù)相似三角形的比例式列出m的方程解答便可.(1)解:把A、C點的坐標(biāo)代入拋物線的解析式得,解得(2)解:直線BC與拋物線的對稱軸交于點F,連接AF,如圖1,此時,AF+CF=BF+CF=BC的值最小,∵AC為定值,∴此時ΔAFC的周長最小,由(1)知,∴拋物線的解析式為:∴對稱軸為直線令,得解得或設(shè)直線BC的解析式為得解得∴直線BC的解析式為:∴當(dāng)時,(3)解:設(shè)P(m,m2-2m-3)(m>3),過P作PH⊥BC于H,過D作DG⊥BC于G,如圖2,則PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,經(jīng)檢驗,,即故m=5∴點P的坐標(biāo)為P(5,12).故存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍,其P點坐標(biāo)為【考點】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法,二次函數(shù)的圖象與性質(zhì),相似三角形的性質(zhì)與判定,軸對稱的性質(zhì)應(yīng)用求線段的最值,第(2)題關(guān)鍵是確定F的位置,第(3)題關(guān)鍵在于構(gòu)建相似三角形.2、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.五、解答題1、(1)-1;(2)(0,-3)與(2,-3).【解析】【分析】(1)根據(jù)拋物線的頂點的縱坐標(biāo)是?2,可以求得m的值;(2)根據(jù)當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,可以求得這兩個定點的坐標(biāo).【詳解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線的頂點的縱坐標(biāo)是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵當(dāng)m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標(biāo)系中的兩個定點,當(dāng)m=1時,y=x2-2x-3;當(dāng)m=2時,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴這兩個定點為(0,-3)與(2,-3).【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想和二次函數(shù)的性質(zhì)解答.2、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面小正方形的個數(shù),再乘每個小正方形的面積可計算出表面積.(1)如圖所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故這個幾何體的表面積是152cm2.【點睛】本題考查作圖-三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應(yīng)注意小正方形的數(shù)目及位置.3、證明見祥解;.【解析】【分析】(1)先求出判別式,再配方變?yōu)榧纯桑唬?)用十字相乘法可以求出根的表達(dá)式,方程的兩個實數(shù)根都為正整數(shù),列不等式組,即可得出m的值.【詳解】證明:∵是關(guān)于的一元二次方程,,∴此方程總有兩個實數(shù)根.解:∵,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論