版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省蛟河市中考數(shù)學考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、一元二次方程x2-3x+1=0的根的情況是(
).A.沒有實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.有兩個不相等的實數(shù)根2、下列各點中,關于原點對稱的兩個點是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)3、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能4、拋物線的對稱軸為直線.若關于的一元二次方程(為實數(shù))在的范圍內(nèi)有實數(shù)根,則的取值范圍是()A. B. C. D.5、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉得到,連接.則在點M運動過程中,線段長度的最小值是()A. B.1 C.2 D.二、多選題(5小題,每小題3分,共計15分)1、對于實數(shù)a,b,定義運算“※”:,例如:4※2,因為,所以,若函數(shù),則下列結論正確的是(
)A.方程的解為,;B.當時,y隨x的增大而增大;C.若關于x的方程有三個解,則;D.當時,函數(shù)的最大值為1.2、下列說法不正確的是()A.相切兩圓的連心線經(jīng)過切點 B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對的弦相等3、已知關于的方程,下列說法不正確的是(
)A.當時,方程無解 B.當時,方程有兩個相等的實數(shù)根C.當時,方程有兩個相等的實數(shù)根 D.當時,方程有兩個不相等的實數(shù)根4、已知拋物線上部分點的橫坐標x與縱坐標y的對應值如表所示,對于下列結論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(
)A.① B.② C.③ D.④5、下列說法中,不正確的是(
)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、寫出一個一元二次方程,使它有兩個不相等的實數(shù)根______.2、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.3、圓錐的底面直徑是80cm,母線長90cm.它的側面展開圖的圓心角和圓錐的全面積依次是______.4、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.5、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.四、簡答題(2小題,每小題10分,共計20分)1、某校一棵大樹發(fā)生一定的傾斜,該樹與地面的夾角.小明測得某時大樹的影子頂端在地面處,此時光線與地面的夾角;又過了一段時間,測得大樹的影子頂端在地面處,此時光線與地面的夾角,若米,求該樹傾斜前的高度(即的長度).(結果保留一位小數(shù),參考數(shù)據(jù):,,,).2、已知:.(1)求代數(shù)式的值;(2)如果,求的值.五、解答題(4小題,每小題10分,共計40分)1、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.2、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當E,F(xiàn)兩點中有一點到達終點時,另一點也停止運動.當△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.3、在中,,,過點A作BC的垂線AD,垂足為D,E為線段DC上一動點(不與點C重合),連接AE,以點A為中心,將線段AE逆時針旋轉90°得到線段AF,連接BF,與直線AD交于點G.(1)如圖,當點E在線段CD上時,①依題意補全圖形,并直接寫出BC與CF的位置關系;②求證:點G為BF的中點.(2)直接寫出AE,BE,AG之間的數(shù)量關系.4、如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求S△ABC;-參考答案-一、單選題1、D【解析】【分析】根據(jù)一元二次方程判別式的性質(zhì)分析,即可得到答案.【詳解】∵∴x2-3x+1=0有兩個不相等的實數(shù)根故選:D.【考點】本題考查了一元二次方程的知識;解題的關鍵是熟練掌握一元二次方程判別式的性質(zhì),從而完成求解.2、D【分析】根據(jù)關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)的特征,故A錯誤;B、(0,2)與(2,0)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)的特征,故B錯誤;C、(﹣2,﹣1)與(﹣2,1)關于x軸對稱,故C錯誤;D、關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),故D正確;故選:D.【點睛】本題考查了關于原點對稱的點的坐標,關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù).3、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關系是:點A在⊙O內(nèi).故選A.4、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內(nèi)有實數(shù)根,當時,,當時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質(zhì);能夠將方程的實數(shù)根問題轉化為二次函數(shù)與直線的交點問題,借助數(shù)形結合解題是關鍵.5、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.二、多選題1、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時y=2x2﹣2x,x<1時,y=﹣x2+1,進而求解.【詳解】解:根據(jù)題意得:當2x≥x+1,即x≥1時,y=(2x)2﹣2x(x+1)=2x2﹣2x,當2x<x+1,即x<1時,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當x≥1時,2x2﹣2x=0,解得x=0(舍去)或x=1,當x<1時,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當x>1時,y=2x2﹣2x,拋物線開口向上,對稱軸是直線x=,∴x>1時,y隨x的增大而增大,∴B選項正確.當x≥1時,y=2x2﹣2x=2(x﹣)2﹣,∴x=1時,y取最小值為y=0,當x<1時,y=﹣x2+1=0,當x=0時,y取最大值為y=1,如圖,當0<m<1時,方程(2x)※(x+1)=m有三個解,∴選項C錯誤,選項D正確.故答案為:ABD.【考點】本題考查二次函數(shù)的新定義問題,解題關鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關系.2、BCD【解析】【分析】要找出正確命題,可運用相關基礎知識分析找出正確選項,也可以通過舉反例排除不正確選項,從而得出正確選項.(1)等弧指的是在同圓或等圓中,能夠完全重合的?。L度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對的弦相等指的是在同圓或等圓中.【詳解】解:A、根據(jù)圓的軸對稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的?。嗣}沒有強調(diào)在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯誤,符合題意;B、此弦不能是直徑,命題錯誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯誤,符合題意;故選:BCD.【考點】本題考查的是兩圓的位置關系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關鍵.3、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.4、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點坐標結合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數(shù)與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數(shù)的圖象和性質(zhì).解題的關鍵在于根據(jù)表格獲取正確的信息.5、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理及其推論.三、填空題1、x2+x﹣1=0(答案不唯一)【解析】【分析】這是一道開放自主題,只要寫出的方程的Δ>0就可以了.【詳解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程為x2+x﹣1=0.故答案為:x2+x﹣1=0(答案不唯一)【考點】本題考查了一元二次方程根的判別式,掌握“根的判別式大于0,方程有兩個不相等的實數(shù)根”是解題的關鍵.2、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關鍵是把不規(guī)則圖形面積通過割補轉化為規(guī)則圖形的面積計算.3、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.4、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.5、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關鍵是求出圓上的點到直線AB的最大距離.四、簡答題1、該樹傾斜前高度約為11.3米.【解析】【分析】過A作AH⊥BC于E,解直角三角形即可得到結論.【詳解】過作于,∵,∴為等腰三角形,設,∵,∴,又在中,∵,∴,即,∴,即,又在中,∴,∴.答:該樹傾斜前高度約為11.3米.【考點】本題考查的是解直角三角形的應用?仰角俯角問題,掌握銳角三角函數(shù)的定義、仰角俯角的概念是解題的關鍵.2、(1)1;(2)【解析】【分析】(1)設a=2k,b=3k,c=5k,代入代數(shù)式,即可求出答案;(2)把a、b、c的值代入,求出即可.【詳解】∵∴設a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考點】本題考查了比例的性質(zhì)的應用,主要考查學生的計算能力.五、解答題1、(1)1秒;(2)不可能,見解析【解析】【分析】(1)經(jīng)過x秒鐘,△PBQ的面積等于4cm2,根據(jù)點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動,表示出BP和BQ的長可列方程求解;(2)看△PBQ的面積能否等于7cm2,只需令×2x(5﹣x)=7,化簡該方程后,判斷該方程的△與0的關系,大于或等于0則可以,否則不可以.【詳解】解:(1)設經(jīng)過x秒以后△PBQ面積為4cm2,根據(jù)題意得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面積等于4cm2;(2)由(1)同理可得(5﹣x)2x=7.整理,得x2﹣5x+7=0,因為b2﹣4ac=25﹣28<0,所以,此方程無解.所以△PBQ的面積不可能等于7cm2.【考點】本題主要考查一元二次方程的應用,關鍵在于理解清楚題意,找出等量關系列出方程求解,判斷某個三角形的面積是否等于一個值,只需根據(jù)題意列出方程,判斷該方程是否有解,若有解則存在,否則不存在.2、(6-)s【解析】【分析】設點E運動的時間是x秒.根據(jù)題意可得方程,解方程即可得到結論.【詳解】解:設點E運動的時間是xs.根據(jù)題意可得22+(2x)2=(3-2x)2+x2,解這個方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴兩點運動了1.5s后停止運動.∴x=6-.答:當△AEF是以AF為底邊的等腰三角形時,點E運動的時間是(6-)s.【考點】本題考查了一元二次方程的應用,考查了矩形的性質(zhì),等腰三角形的判定及性質(zhì),勾股定理的運用.3、(1)①BC⊥CF;證明見詳解;②見詳解;(2)2AE2=4AG2+BE2.證明見詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時針旋轉90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長BA交CF延長線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=∠CAD=,可證△BAG∽△BHF,得出HF=2AG,再證△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【詳解】解:(1)①如圖所示,BC⊥CF.∵將線段AE逆時針旋轉90°得到線段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋁電解筑爐工安全行為評優(yōu)考核試卷含答案
- 紡絲凝固浴液配制工崗前客戶服務考核試卷含答案
- 盲文印刷員安全宣傳模擬考核試卷含答案
- 浸泡型果酒釀造工崗前安全意識考核試卷含答案
- 入團申請書800字書信格式
- 2025年傳統(tǒng)銀飾合作協(xié)議書
- 2025年碳纖維正交三向織物項目發(fā)展計劃
- 2025年捆鈔機合作協(xié)議書
- 2025年廣播信號傳輸服務項目發(fā)展計劃
- 2025年抄紙助劑項目合作計劃書
- 通信設備用電安全培訓課件
- 方太企業(yè)培訓課件
- 水上平臺施工安全培訓課件
- 中秋福利采購項目方案投標文件(技術方案)
- 固態(tài)電池技術在新能源汽車領域的產(chǎn)業(yè)化挑戰(zhàn)與對策研究
- 手術部(室)醫(yī)院感染控制標準WST855-2025解讀課件
- 二氧化硅氣凝膠的制備技術
- 湖南省岳陽市平江縣2024-2025學年高二上學期期末考試語文試題(解析版)
- 2024-2025學年湖北省武漢市江漢區(qū)七年級(下)期末數(shù)學試卷
- 常規(guī)體檢指標講解
- 新人教版高中數(shù)學必修第二冊-第八章 立體幾何初步 章末復習【課件】
評論
0/150
提交評論