2022年山西省孝義市中考數(shù)學模擬試題含完整答案詳解(歷年真題)_第1頁
2022年山西省孝義市中考數(shù)學模擬試題含完整答案詳解(歷年真題)_第2頁
2022年山西省孝義市中考數(shù)學模擬試題含完整答案詳解(歷年真題)_第3頁
2022年山西省孝義市中考數(shù)學模擬試題含完整答案詳解(歷年真題)_第4頁
2022年山西省孝義市中考數(shù)學模擬試題含完整答案詳解(歷年真題)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省孝義市中考數(shù)學模擬試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、已知⊙O的半徑為4,,則點A在()A.⊙O內 B.⊙O上 C.⊙O外 D.無法確定2、從下列命題中,隨機抽取一個是真命題的概率是()(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)弧長是,面積是的扇形的圓心角是.A. B. C. D.13、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(

)A. B. C. D.4、把拋物線的圖象向左平移1個單位,再向上平移2個單位,所得的拋物線的函數(shù)關系式是(

)A. B. C. D.5、拋一枚質地均勻的硬幣三次,其中“至少有兩次正面朝上”的概率是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、古希臘數(shù)學家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點A,連接AO并延長交⊙O于點B;②以點B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點;③連接CO,DO并延長分別交⊙O于點E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點G,則下列結論正確的是.A.△AOE的內心與外心都是點G B.∠FGA=∠FOAC.點G是線段EF的三等分點 D.EF=AF2、如圖,是的直徑,,交于點,交于點,是的中點,連接.則下列結論正確的是(

)A. B. C. D.是的切線3、下列命題中,不正確的是(

)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內部或外部4、以圖①(以點O為圓心,半徑為1的半圓)作為“基本圖形”,分別經(jīng)歷如下變換能得到圖②的有(

)A.只要向右平移1個單位 B.先以直線為對稱軸進行翻折,再向右平移1個單位C.先繞著點O旋轉,再向右平移1個單位 D.繞著的中點旋轉即可5、關于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當c=0時,函數(shù)的圖象經(jīng)過原點;B.當c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標是;D.當b=0時,函數(shù)的圖象關于y軸對稱.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、小明和小強玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機出手一次,平局的概率為______.2、第24屆世界冬季奧林匹克運動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內隨機投擲骰子(假設骰子落在長方形內的每一點都是等可能的),經(jīng)過大量重復投擲試驗,發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計宣傳畫上北京冬奧會會徽圖案的面積約為______.3、如圖,在中,,是內的一個動點,滿足.若,,則長的最小值為_______.4、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.5、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.四、簡答題(2小題,每小題10分,共計20分)1、二次函數(shù)與軸分別交于點和點,與軸交于點,直線的解析式為,軸交直線于點.(1)求二次函數(shù)的解析式;(2)為線段上一動點,過點且垂直于軸的直線與拋物線及直線分別交于點、.直線與直線交于點,當時,求值.2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?五、解答題(4小題,每小題10分,共計40分)1、如圖,在直角坐標系中,將△ABC繞點A順時針旋轉90°.(1)畫出旋轉后的△AB1C1,并寫出B1、C1的坐標;(2)求線段AB在旋轉過程中掃過的面積.2、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構成什么圖形,請說明理由.4、已知拋物線y=mx2-2mx-3.(1)若拋物線的頂點的縱坐標是-2,求此時m的值;(2)已知當m≠0時,無論m為其他何值,每一條拋物線都經(jīng)過坐標系中的兩個定點,求出這兩個定點的坐標.-參考答案-一、單選題1、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.2、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】解:(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)設扇形半徑為r,圓心角為n,∵弧長是,則=,則,∵面積是,則=,則360×240,則,則n=3600÷24=150°,故扇形的圓心角是,是假命題,則隨機抽取一個是真命題的概率是,故選C.【考點】本題考查了命題的真假,概率,扇形的弧長和面積,無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.3、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關鍵.4、A【解析】【分析】求出原拋物線的頂點坐標,再根據(jù)向左平移橫坐標減,向上平移縱坐標加求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線的頂點坐標為(2,1),∴向左平移1個單位,再向上平移2個單位后的頂點坐標是(1,3)∴所得拋物線解析式是.故選:A.【考點】本題考查了二次函數(shù)圖象的平移,利用頂點的變化確定拋物線解析式的變化更簡便.5、B【分析】根據(jù)隨機擲一枚質地均勻的硬幣三次,可以分別假設出三次情況,畫出樹狀圖即可.【詳解】解:隨機擲一枚質地均勻的硬幣三次,根據(jù)樹狀圖可知至少有兩次正面朝上的事件次數(shù)為:4,總的情況為8次,故至少有兩次正面朝上的事件概率是:.故選:B.【點睛】本題主要考查了樹狀圖法求概率,解題的關鍵是根據(jù)題意畫出樹狀圖.二、多選題1、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內心與外心都是點G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點G是線段EF的三等分點,故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯誤,故答案為:ABC.【考點】本題考查作圖-復雜作圖,等邊三角形的判定和性質,菱形的判定和性質,三角形的內心,外心等知識,解題的關鍵是證明四邊形AEOF,四邊形AODE都是菱形.2、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點,得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設推出不正確.【詳解】解:連接,.是的直徑,(直徑所對的圓周角是直角),;而在中,,是邊上的中線,選項符合題意);是的直徑,,,,,,選項符合題意),是的中位線,即:,是的中點,是的中位線,,.是的切線選項符合題意);只有當是等腰直角三角形時,,故選項錯誤,不符合題意,故選:BCD.【考點】本題考查的知識點是切線的判定與性質、等腰三角形的性質及圓周角定理,解題的關鍵是運用等腰三角形性質及圓周角定理及切線性質作答.3、ABD【解析】【分析】根據(jù)圓的性質定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關鍵.4、BCD【解析】【分析】觀察兩個半圓的位置關系,再確定能否通過圖象變換得到,以及旋轉、平移的方法.【詳解】解:由圖可知,圖(1)先以直線AB為對稱軸進行翻折,再向右平移1個單位,或先繞著點O旋轉180°,再向右平移1個單位,或繞著OB的中點旋轉180°即可得到圖(2)故選BCD【考點】本題考查了旋轉、軸對稱、平移的性質.關鍵是根據(jù)變換圖形的位置關系,確定變換規(guī)律.5、ABD【解析】【分析】根據(jù)c與0的關系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當c=0時,函數(shù)的圖象經(jīng)過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當a<0時,函數(shù)圖象最高點的縱坐標是;當a>0時,函數(shù)圖象最低點的縱坐標是;由于a值不定,故無法判斷最高點或最低點;D.當b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當b=0時,函數(shù)的圖象關于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當a<0時,函數(shù)的最大值是;當a>0時,函數(shù)的最小值是是解題關鍵.三、填空題1、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強玩“石頭、剪刀、布”游戲,所有可能出現(xiàn)的結果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強平局的概率為:,故答案為:.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點睛】題目主要考查根據(jù)頻率計算滿足條件的情況,理解題意,熟練掌握頻率的計算方法是解題關鍵.3、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關鍵在于確定點D的運動軌跡.4、【分析】連接OB,交AC于點D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設,則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質,等邊三角形的判定和性質,勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關鍵.5、①②④【分析】連接OM,由切線的性質可得,繼而得,再根據(jù)平行線的性質以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設,則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質,平行線分線段成比例定理,相似三角形的判定與性質,勾股定理等,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.四、簡答題1、(1);(2)的值為,,.【解析】【分析】(1)由直線BC求出B、C的坐標,再代入二次函數(shù)的解析式,求出b、c的值,得出二次函數(shù)的解析式;(2)用含有m的代數(shù)式表示點E和點F的坐標,用相似三角形對應邊成比例的性質列方程,求出m的值.【詳解】(1)直線的解析式點,點和在拋物線上,解得:二次函數(shù)的解析式為:(2)二次函數(shù)與軸交于點、點軸交直線于點點軸,軸,軸交直線于點,點點的坐標為,點的坐標為①若點在原點右側,如圖1,則,即,解得:,;②若點在原點左側,如圖2,則即,解得:,(舍去);綜上所述,的值為,,.【考點】本題考查二次函數(shù)與幾何的綜合問題,熟練掌握二次函數(shù)的性質是本題的解題關鍵,解題時結合一次函數(shù)的性質,利用相似三角形的性質列方程,靈活應用函數(shù)圖像上點的坐標特征.2、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質與判定,勾股定理,平行四邊形的性質等等,解題的關鍵在于能夠熟練掌握切線長定理.五、解答題1、(1)作圖見解析,、;(2)【分析】(1)將繞點A順時針旋轉90°得,根據(jù)點A、B、C坐標,即可確定出點、的坐標;(2)根據(jù)勾股定理求出AB的長,由扇形面積公式即可得出答案.【詳解】(1)將繞點A順時針旋轉90°得如圖所示:∴、;(2)由圖可知:,∴線段AB在旋轉過程中掃過的面積為.【點睛】本題考查作旋轉圖形以及扇形的面積公式,掌握旋轉的性質及扇形的面積公式是解題的關鍵.2、【分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論