2025年人教A版新高二數(shù)學(xué)暑假預(yù)習(xí):用空間向量研究距離問題(2知識點(diǎn)+四大題型+思維導(dǎo)圖+過關(guān)檢測)學(xué)生版_第1頁
2025年人教A版新高二數(shù)學(xué)暑假預(yù)習(xí):用空間向量研究距離問題(2知識點(diǎn)+四大題型+思維導(dǎo)圖+過關(guān)檢測)學(xué)生版_第2頁
2025年人教A版新高二數(shù)學(xué)暑假預(yù)習(xí):用空間向量研究距離問題(2知識點(diǎn)+四大題型+思維導(dǎo)圖+過關(guān)檢測)學(xué)生版_第3頁
2025年人教A版新高二數(shù)學(xué)暑假預(yù)習(xí):用空間向量研究距離問題(2知識點(diǎn)+四大題型+思維導(dǎo)圖+過關(guān)檢測)學(xué)生版_第4頁
2025年人教A版新高二數(shù)學(xué)暑假預(yù)習(xí):用空間向量研究距離問題(2知識點(diǎn)+四大題型+思維導(dǎo)圖+過關(guān)檢測)學(xué)生版_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題06用空間向量研究距離問題

聞內(nèi)容導(dǎo)航一預(yù)習(xí)三步曲

第一步:學(xué)

析教材學(xué)知識教材精講精析、全方位預(yù)習(xí)

練題型強(qiáng)知識4大核心考點(diǎn)精準(zhǔn)練

第二步:記

思維導(dǎo)圖助力掌握知識框架、學(xué)習(xí)目標(biāo)復(fù)核內(nèi)容掌握

第三步:測

過關(guān)測穩(wěn)提升小試牛刀檢測預(yù)習(xí)效果、查漏補(bǔ)缺快速提升

qj析教材學(xué)知識

知識點(diǎn)01:點(diǎn)到線的距離

1、點(diǎn)到直線的距離

已知直線/的單位方向向量為Z,A是直線/上的定點(diǎn),P是直線/外一點(diǎn).設(shè)衣=£,則向量而在直線/

上的投影向量而=(a-u)u,在RtAAPQ中,由勾股定理得:PQ=AP|2-1-(a-uf

2、異面直線的距離(線線距)

(1)公垂線:兩條異面直線的公垂線在這兩條異面直線間的線段(公垂線段)的長度,叫做兩條異面直線

間的距離.兩條異面直線的公垂線有且只有一條.

(2)兩條異面直線的距離:兩條異面直線的公垂線段的長度.

知識點(diǎn)02:點(diǎn)到平面的距離

1、點(diǎn)到平面的距離

如圖,已知平面a的法向量為A是平面a內(nèi)的定點(diǎn),P是平面a外一點(diǎn).過點(diǎn)。作平面a的垂線交

平面a于點(diǎn)。,則方是直線/的方向向量,且點(diǎn)P到平面a的距離就是衣在直線/上的投影向量行的長

度.PQ=|QW1=1空口=坐過

In\I77I|711

注:線面距、面面距均可轉(zhuǎn)化為點(diǎn)面距離,用求點(diǎn)面距的方法進(jìn)行求解.

\AB-n\

直線。與平面。之間的距離:d=J---------1,其中為是平面a的法向量.

|利

IAB-HI

兩平行平面6,之間的距離:d=J---------L其中乃是平面a的法向量.

1?1

【題型01:點(diǎn)到線的距離】

一、單選題

1.(24-25高二上?廣東深圳?期末)已知4(221),3(3,2,0),則點(diǎn)P(2,0,-1)到直線人臺的距離為()

A.73B.2C.V5D.加

2.(24-25高二上?海南?階段練習(xí))點(diǎn)4(2,1,1)是直線/上一點(diǎn),Z=(1,0,0)是直線/的一個(gè)方向向量,則點(diǎn)

61,2,0)到直線/的距離是()

A.;B.y/2

C.2D.272

3.(24-25高二上?四川眉山?期末)如圖,在棱長為2的正方體4BCD-A與GR中,E,尸分別為棱4%,

A4的中點(diǎn),則點(diǎn)尸到直線8E的距離為()

A.6B.4C.2D.1

4.(24-25高二下?江蘇揚(yáng)州?期中)在長方體ABC。-A瓦GR中,AB=1,AA=2,AD=4,點(diǎn)E在棱BC上,

且3c=4BE,點(diǎn)G為△AgC的重心,則點(diǎn)G到直線AE的距離為()

A.在B.72C.3D.V3

33

5.(24-25高二上?河南洛陽?階段練習(xí))已知直線/的方向向量為為=(3,0,3),且過點(diǎn)加(1,-1,-1),則點(diǎn)N(l,l,a)

到直線/的距離的最小值為()

A.1B.2C.&D.6

6.(24-25高二上?江蘇常州?期中)如圖,在棱長為2的正方體ABCD-A瓦G2中,E為BC的中點(diǎn),點(diǎn)尸

在線段2E上,點(diǎn)P到直線A4的距離的最小值為()

C.|?D.—y/s

5

【題型02:點(diǎn)到面的距離】

一、單選題

1.(24-25高二下?甘肅白銀?期中)已知點(diǎn)A(2,1,1)在平面。內(nèi),點(diǎn)3(9,8,5)在平面a外,且平面a的一個(gè)

法向量為Z=(w),則點(diǎn)B到平面a的距離為()

A.6y/3B.672C.3瓜D.375

2.(23-24高二上?安徽滁州?期末)如圖,在棱長為3的正方體ABC。-AAG2中,點(diǎn)E是棱CD上的一點(diǎn),

且DE=2EC,則點(diǎn)用到平面AEG的距離為()

3.(24-25高二下?甘肅慶陽?期中)如圖所示,在直四棱柱中,底面為平行四邊形,

BD1DC,BD=DC=1,點(diǎn)E在棱441上,且AE=;44,=:,則點(diǎn)8到平面口?G的距離為()

A.@B.走C.@D.交

7432

4.(24-25高二下?江蘇宿遷?期中)在四棱錐尸一ABCZ)中,AB=(2,3,-1),AC=(-2,0,1),AP=(3,-l,-2),

則該四棱錐的高為()

A.9B.-C.1D.在

3325

5.(24-25高二上?海南?期末)已知A2是圓柱下底面的直徑,C是下底面圓弧AB的中點(diǎn),CRBG是圓柱

的母線,Af是線CP的中點(diǎn),AB=CF=4.則點(diǎn)歹到平面AMG的距離為()

A.1B.72C.2D.20

6.(24-25高二上?廣東汕尾?階段練習(xí))如圖①,在Rt^ABC中,AB=2BC=6,ZABC=90°,E,歹分別

為AB,AC上的點(diǎn),EFIIBC,AE=2EB.如圖②,將AAEF沿EE折起,當(dāng)四棱錐A-5CFE的體積最大時(shí),

點(diǎn)E到平面的距離為()

圖①圖②

A逑B.偵C.瓜D.逅

332

【題型03:其他距離】

一、單選題

1.(24-25高二上?河南周口?階段練習(xí))已知平面a,"均以3=(-2,1,2)為法向量,平面a經(jīng)過坐標(biāo)原點(diǎn)0,

平面夕經(jīng)過點(diǎn)尸(3,2,-1),則平面a與夕的距離為()

A.2B.20C.3D.273

2.(24-25高二下?山東荷澤?開學(xué)考試)如圖,在棱長為1的正方體中,E為線段的中

點(diǎn),尸為線段B片的中點(diǎn),則直線AE到平面G。尸的距離為()

3.(24-25高二下?甘肅平?jīng)?期中)正四棱錐S-ABC。中,。為頂點(diǎn)S在底面ABC。內(nèi)的正投影,尸為側(cè)棱

SD的中點(diǎn),且SO=OO=后,則異面直線PC與5。的距離為()

A屈口加「百n石

A.D.C.U.

105105

4.(24-25高二上?廣東佛山?期末)在如圖所示的試驗(yàn)裝置中,兩個(gè)正方形框架A8CD,AB斯的邊長都是3,

且它們所在的平面互相垂直.活動彈子M,N分別在正方形對角線AC和8尸上移動,則的最小值為()

「3夜

L(--------------

2

二、多選題

5.(23-24高二上?山東德州.期末)在棱長為1的正方體ABC。-中,下列結(jié)論正確的是()

A.點(diǎn)A到DG的距離為漁B.面BCQ與面A4R的距離為更

23

C.直線AG與平面A8GR所成的角為£D.點(diǎn)4到平面BG。的距離為變

32

【題型04:距離中的探索性問題】

一、解答題

1.(24-25高二上?陜西西安?階段練習(xí))如圖,在正三棱柱ABC-A用G中,懼=AC=2,?!攴謩e為CC?\B

的中點(diǎn).

B

(1)線段2C上是否存在點(diǎn)G,使得4GL2O?若存在,求出點(diǎn)G到平面A3。的距離;若不存在,說明理

由.

2.(24-25高二上?福建福州?期中)如圖,在四棱錐P-ABCD中,平面PDC_L平面ABC。,AD1DC,ABIIDC,

AB=^CD=AD=1,M為棱尸C的中點(diǎn).

p

AL

⑴證明:8M〃平面PAD;

(2)若PC=?,PD=1,在線段PA上是否存在點(diǎn)。,使得點(diǎn)。到平面瓦亞的距離是手?若存在,求出

尸。的值;若不存在,說明理由.

3.(24-25高二上?貴州六盤水?期中)如圖,在棱長為2的正方體ABCD-A瓦GR中,E為BC的中點(diǎn),P

為底面ABCD內(nèi)一動點(diǎn)(包括邊界),且滿足瓦尸,。乃.

(1)是否存在點(diǎn)P,使得用P〃平面R£>E?

⑵求用尸的取值范圍.

(3)求點(diǎn)尸到直線的距離的最小值.

7T

4.(24-25高二上?黑龍江大慶?階段練習(xí))如圖,已知四邊形ABCD為菱形,AB=4,ZDAB=~,將菱形

A5C。繞AD所在直線旋轉(zhuǎn)到AEFD的位置,使得平面AEED_L平面ABCZ),連接BE,CF,得到幾何體

ABE-DCF,M、N分別為"、BD上的動點(diǎn),且也=/1,—其中0<XWl.

AFBD2

⑴求BE的長;

(2)是否存在4,使得直線MN//平面3CFE,若存在,求出4的值;若不存在,請說明理由.

⑶求|MN|的最小值,并求|MN|取最小值時(shí),點(diǎn)M到平面3CFE的距離與點(diǎn)N到平面3CFE的距離的比值.

串知識識框架

一、點(diǎn)到直線的距離點(diǎn)到直線的距離公式

用空間向量研究距離問題

點(diǎn)到平面的距離公式

二、點(diǎn)到平面的距離了解線到面、面到面的距離求法

了解異面直線間的距離定義及求法

8過關(guān)測穩(wěn)提升

一、單選題

1.(24-25高二上?福建福州?期中)己知點(diǎn)1,1),直線/過原點(diǎn)且平行于2=(0,1,2),則點(diǎn)A至心的距離為

()

AA/30口]-2省n莊

.-----------LJ.1L.-----kJ,---------

555

2.(24-25高二上?北京西城?期中)布達(dá)佩斯的伊帕姆維澤蒂博物館收藏的達(dá)?芬奇方磚,在正六邊形上畫了

具有視覺效果的正方體圖案(如圖1),把三片這樣的達(dá)?芬奇方磚形成圖2的組合,這個(gè)組合表達(dá)了圖3

所示的幾何體.若圖3中每個(gè)正方體的棱長為1,則點(diǎn)尸到平面QGC的距離是()

3.(24-25高二上?浙江杭州?期中)如圖,在棱長為2的正方體中,E為的中點(diǎn),尸為

2E的中點(diǎn),則點(diǎn)P到直線CG的距離為()

A.1B.叵C.-D.V5

22

4.(24-25高二上?全國?課后作業(yè))在三棱錐O-ABC中,OA,OB,OC兩兩相互垂直,OA=2,08=4,

。。=6,則點(diǎn)0到平面ABC的距離為()

.12n-12r3

A.—B.2C.—D.一

572

5.(24-25高二上.遼寧大連.期末)已知空間四點(diǎn)A(3,0,0),B(3,3,2),C(0,3,0),。(0,0,3),則四面體ABC。

的體積為()

A.述B.—C.15D.-

322

6.(23-24高二上.廣東江門?期中)在三棱錐A-3CD中,AS=AC=AD=6,AB,AC,AD兩兩垂直,

E為AB的中點(diǎn),尸為AO上更靠近點(diǎn)。的三等分點(diǎn),。為△BCD的重心,則。到直線所的距離為()

A4而口3726

55

R2A/26nV26

55

7.(24-25高二下廣東廣州?期中)如圖,在棱長為2的正方體A3。-ABC2中,E為線段的中點(diǎn),

F為線段BBt的中點(diǎn),則平面AEBi到平面QDF的距離為()

D-T

8.(24-25高二上山東濱州?期末)在直四棱柱ABC。-ASG,中,底面A2CZ)是正方形,AB=2,M=3,

點(diǎn)N在棱C。上,若直線A耳到平面ABN的距離為述,則:的值為()

5

A.1B.—C.—D.一

233

9.(24-25高二上?遼寧大連?期中)在長方體ABC。-A瓦G2中,/⑷=1,AB=2,A£)=3,£為42的中

點(diǎn),則異面直線4G與。E的距離為()

A.41B.V10C.1D.

19

10.(24-25高二上?廣東惠州?階段練習(xí))如圖,正方體的棱長為1,且耳尸,6,”了,乙分別

是AB,網(wǎng),8?62田204各棱的中點(diǎn),則點(diǎn)用到平面EFGffiZ的距離為()

A.速B.1C.@D.B

3462

11.(24-25高二上?重慶?期末)已知正方體AB。-ABC,的棱長為1,M為棱AA的中點(diǎn),G為側(cè)面CD^G

的中心,點(diǎn)尸,。分別為直線AD,AB上的動點(diǎn),且PGLMQ,當(dāng)|迎|取得最小值時(shí),點(diǎn)0到平面PMG

的距離為()

A."B.好C.1D.在

222

12.(24-25高二上?吉林?期中)如圖1,平面四邊形ABC。中,ACS3D,垂足為。,。4=。8=1,。。=。。=2,

如圖2,將△ABD沿3。翻折至△尸班),使得平面尸皮),平面38,若點(diǎn)E為線段2。上的動點(diǎn),則點(diǎn)E到

直線PC距離的最小值為()

圖1圖2

1口2A/5275

i.—B.—C.--nU.-------

5555

二、多選題

13.(23-24高二上?湖北?階段練習(xí))已知正方體ABC。-A瓦G2的棱長為1,點(diǎn)及。分別是A4、AG的中

點(diǎn),尸滿足而+彳而麗,則下列說法正確的是()

423

A.點(diǎn)A到直線BE的距離是撞

5

B.點(diǎn)。到平面ABG2的距離為受

4

C.平面\BD與平面4CR間的距離為正

3

25

D.點(diǎn)P到直線A3的距離為力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論