難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題攻克試卷(含答案詳解)_第1頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題攻克試卷(含答案詳解)_第2頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題攻克試卷(含答案詳解)_第3頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題攻克試卷(含答案詳解)_第4頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題攻克試卷(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,以O(shè)為圓心,長(zhǎng)為半徑畫(huà)弧別交于A、B兩點(diǎn),再分別以A、B為圓心,以長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形2、如圖,OA⊥OB,OB=4,P是射線OA上一動(dòng)點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運(yùn)動(dòng)時(shí),PD的長(zhǎng)度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變3、如圖,在中,,點(diǎn),分別是,上的點(diǎn),,,點(diǎn),,分別是,,的中點(diǎn),則的長(zhǎng)為().A.4 B.10 C.6 D.84、如圖,長(zhǎng)方形紙片ABCD中,AB=3cm,AD=9cm,將此長(zhǎng)方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為()A.6cm2 B.8cm2 C.10cm2 D.12cm25、菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.86、如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對(duì)折至△DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.47、如圖,矩形ABCD的面積為1cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類(lèi)推,則平行四邊形AO2014C2015B的面積為()cmA.

B.

C.

D.8、如圖,在長(zhǎng)方形ABCD中,AB=10cm,點(diǎn)E在線段AD上,且AE=6cm,動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段BC上.以vcm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),當(dāng)△EAP與△PBQ全等時(shí),v的值為()A.2 B.4 C.4或 D.2或9、在中,AC與BD相交于點(diǎn)O,要使四邊形ABCD是菱形,還需添加一個(gè)條件,這個(gè)條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC10、如圖,正方形的面積為256,點(diǎn)F在上,點(diǎn)E在的延長(zhǎng)線上,的面積為200,則的長(zhǎng)為()A.10 B.11 C.12 D.15第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,正方形ABCD的邊長(zhǎng)為做正方形,使A,B,C,D是正方形各邊的中點(diǎn);做正方形,使是正方形各邊的中點(diǎn)……以此類(lèi)推,則正方形的邊長(zhǎng)為_(kāi)_________.2、如圖,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.若AF=5,BF=3,則AC的長(zhǎng)為_(kāi)____.3、如圖,在正方形ABCD中,AB=2,取AD的中點(diǎn)E,連接EB,延長(zhǎng)DA至F,使EF=EB,以線段AF為邊作正方形AFGH,點(diǎn)H在線段AB上,則的值是_____.4、如圖,在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_(kāi)____.5、如圖,正方形的邊長(zhǎng)為4,它的兩條對(duì)角線交于點(diǎn),過(guò)點(diǎn)作邊的垂線,垂足為,的面積為,過(guò)點(diǎn)作的垂線,垂足為,△的面積為,過(guò)點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.6、如圖,將長(zhǎng)方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.7、如圖,正方形ABCD中,BD為對(duì)角線,且BE為∠ABD的角平分線,并交CD延長(zhǎng)線于點(diǎn)E,則∠E=______°.8、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對(duì)角線BD上,點(diǎn)N為射線BC上一動(dòng)點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為_(kāi)__.9、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為_(kāi)_____.10、如圖,在矩形中,,,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn),重合),將△沿折疊,使得點(diǎn)落在處,當(dāng)△為等腰三角形時(shí),的長(zhǎng)為_(kāi)__________.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖所示,在邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點(diǎn)的一動(dòng)點(diǎn),N是CD上一動(dòng)點(diǎn),且AM+CN=1.(1)證明:無(wú)論M,N怎樣移動(dòng),△BMN總是等邊三角形;(2)求△BMN面積的最小值.2、如圖,在平行四邊形中,,..點(diǎn)在上由點(diǎn)向點(diǎn)出發(fā),速度為每秒;點(diǎn)在邊上,同時(shí)由點(diǎn)向點(diǎn)運(yùn)動(dòng),速度為每秒.當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)為何值時(shí),四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時(shí),四邊形的面積是四邊形的面積的四分之三?求出此時(shí)的度數(shù).(4)連接,是否存在某一時(shí)刻,使為等腰三角形?若存在,請(qǐng)求出此刻的值;若不存在,請(qǐng)說(shuō)明理由.3、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點(diǎn)B的坐標(biāo);(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點(diǎn)M,點(diǎn)P是AB的中點(diǎn),連PM,求∠PMO度數(shù);(3)在(2)的條件下,點(diǎn)Q是ON的中點(diǎn),連PQ,求證:PQ⊥AM.

4、D、分別是不等邊三角形即的邊、的中點(diǎn).是平面上的一動(dòng)點(diǎn),連接、,、分別是、的中點(diǎn),順次連接點(diǎn)、、、.(1)如圖,當(dāng)點(diǎn)在內(nèi)時(shí),求證:四邊形是平行四邊形;(2)若四邊形是菱形,點(diǎn)所在位置應(yīng)滿足什么條件?(直接寫(xiě)出答案,不需說(shuō)明理由.)5、如圖,在菱形ABCD中,點(diǎn)E,F(xiàn)分別是邊AB和BC上的點(diǎn),且BE=BF.求證:∠DEF=∠DFE.

-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點(diǎn)睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對(duì)角線垂直的平行四邊形是菱形.2、D【解析】【分析】過(guò)點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長(zhǎng)度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過(guò)作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.3、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點(diǎn)P,D分別是AF,AB的中點(diǎn),∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點(diǎn)睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【點(diǎn)睛】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)中位線定理可得對(duì)角線AC的長(zhǎng),再由菱形面積等于對(duì)角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.6、D【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過(guò)勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結(jié)合①可得AG=GF,根據(jù)等高的兩個(gè)三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結(jié)論的是4個(gè).故選:D.【點(diǎn)睛】本題考查了圖形的翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計(jì)算,有一定的難度.7、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進(jìn)行求解.【詳解】解:∵O1為矩形ABCD的對(duì)角線的交點(diǎn),∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對(duì)角線交于點(diǎn)O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類(lèi)推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點(diǎn)睛】本題主要考查矩形的性質(zhì)與平行四邊形的性質(zhì),熟練掌握矩形的性質(zhì)與平行四邊形的性質(zhì)是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)題意可知當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP,②當(dāng)AP=BP時(shí),△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問(wèn)題的基本數(shù)量關(guān)系求解即可.【詳解】解:當(dāng)△EAP與△PBQ全等時(shí),有兩種情況:①當(dāng)EA=PB時(shí),△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動(dòng)點(diǎn)P在線段AB上,從點(diǎn)A出發(fā)以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),∴點(diǎn)P和點(diǎn)Q的運(yùn)動(dòng)時(shí)間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當(dāng)AP=BP時(shí),△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點(diǎn)睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識(shí)點(diǎn),注意數(shù)形結(jié)合和分類(lèi)討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.9、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時(shí)平行四邊形,AO⊥BO,∴是菱形;故選C.【點(diǎn)睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.10、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計(jì)算CE,根據(jù)正方形ABCD的面積計(jì)算BC,根據(jù)勾股定理計(jì)算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因?yàn)镽t△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點(diǎn)睛】本題考查了正方形,等腰直角三角形面積的計(jì)算,考查了直角三角形中勾股定理的運(yùn)用,本題中求證CF=CE是解題的關(guān)鍵.二、填空題1、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長(zhǎng),再根據(jù)勾股定理求出和的長(zhǎng),找出規(guī)律,即可得出正方形的邊長(zhǎng).【詳解】解:∵A,B,C,D是正方形各邊的中點(diǎn)∴,∵正方形ABCD的邊長(zhǎng)為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長(zhǎng)為故答案為:.【點(diǎn)睛】本題考查了正方形性質(zhì)、勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)計(jì)算結(jié)果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.2、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形與折疊問(wèn)題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).3、【解析】【分析】設(shè),由正方形的性質(zhì)和勾股定理求出的長(zhǎng),可得的長(zhǎng),再求出的長(zhǎng),得出的長(zhǎng),進(jìn)而可得結(jié)果.【詳解】解:設(shè),四邊形為正方形,,,點(diǎn)為的中點(diǎn),,,,,四邊形為正方形,,,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì)以及勾股定理,解題的關(guān)鍵是熟練掌握正方形的性質(zhì),由勾股定理求出的長(zhǎng).4、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,∴作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過(guò)點(diǎn)D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱-最短路線問(wèn)題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.5、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過(guò)計(jì)算三角形的面積得出規(guī)律.6、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點(diǎn)睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.7、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點(diǎn)睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.8、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時(shí),∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時(shí),此時(shí)M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時(shí),∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,注意不能漏解.9、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).10、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問(wèn)題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點(diǎn)落在處,∴,,設(shè),則①當(dāng)時(shí),如圖過(guò)點(diǎn)作,則四邊形為矩形,在中在中即解得②當(dāng)時(shí),如圖,設(shè)交于點(diǎn),設(shè)垂直平分在中即在中,即聯(lián)立,解得③當(dāng)時(shí),如圖,又垂直平分垂直平分此時(shí)重合,不符合題意綜上所述,或故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類(lèi)討論是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.設(shè)BM=BN=MN=x,則,故,∴當(dāng)BM⊥AD時(shí),x最小,此時(shí),,.∴△BMN面積的最小值為.【點(diǎn)睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線段最短,全等三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是作輔助線證三角形全等.2、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或

或時(shí),為等腰三角形,理由見(jiàn)解析.【分析】(1)利用平行四邊形的對(duì)邊相等AQ=BP建立方程求解即可;

(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;

(3)利用面積關(guān)系求出t,即可求出DQ,進(jìn)而判斷出DQ=PQ,即可得出結(jié)論;

(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運(yùn)動(dòng)知,AQ=16?t,BP=2t,

∵四邊形ABPQ為平行四邊形,

∴AQ=BP,

∴16?t=2t

∴t=,

即:t=s時(shí),四邊形ABPQ是平行四邊形;(2)過(guò)點(diǎn)A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,

∴AE=4,

由運(yùn)動(dòng)知,BP=2t,DQ=t,

∵四邊形ABCD是平行四邊形,

∴AD=BC=16,

∴AQ=16?t,

∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,

∵BC=16,

∴S四邊形ABCD=16×4=64,

由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),

∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三

∴2t+32=×64,

∴t=8;

如圖,當(dāng)t=8時(shí),點(diǎn)P和點(diǎn)C重合,DQ=8,

∵CD=AB=8,

∴DP=DQ,

∴∠DQC=∠DPQ,

∴∠D=∠B=30°,

∴∠DQP=75°;(4)①當(dāng)AB=BP時(shí),BP=8,

即2t=8,t=4;

②當(dāng)AP=BP時(shí),如圖,∵∠B=30°,

過(guò)P作PM垂直于AB,垂足為點(diǎn)M,

∴BM=4,,解得:BP=,

∴2t=,

∴t=

③當(dāng)AB=AP時(shí),同(2)的方法得,BP=,

∴2t=,

∴t=

所以,當(dāng)t=4或或時(shí),△ABP為等腰三角形.【點(diǎn)睛】此題是四邊形綜合題,主要考查了平行四邊形的性質(zhì),含30°的直角三角形的性質(zhì),等腰三角形的性質(zhì),解(1)的關(guān)鍵是利用AQ=BP建立方程,解(2)的關(guān)鍵是求出梯形的高,解(3)的關(guān)鍵是求出t,解(4)的關(guān)鍵是分類(lèi)討論的思想思考問(wèn)題.3、(1)(1,4);(2)45°;(3)見(jiàn)解析

【分析】(1)過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點(diǎn)A的坐標(biāo)為(-4,1),得到OF=AE=1,BF=OE=4,則點(diǎn)B的坐標(biāo)為(1,4);(2)延長(zhǎng)MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點(diǎn)坐標(biāo)為(-4,1),B點(diǎn)坐標(biāo)為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點(diǎn)G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過(guò)點(diǎn)A作AE⊥x軸于E,過(guò)點(diǎn)B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點(diǎn)A的坐標(biāo)為(-4,1),∴OF=AE=1,BF=OE=4,∴點(diǎn)B的坐標(biāo)為(1,4);(2)如圖所示,延長(zhǎng)MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點(diǎn)P是AB的中點(diǎn),∴AP=BP,∴△APH≌△BPM(AAS),∴A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論