版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
深圳布吉街道布吉中學(xué)中考數(shù)學(xué)期末二次函數(shù)和幾何綜合匯編一、二次函數(shù)壓軸題1.若一個(gè)函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時(shí),函數(shù)表達(dá)式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示.如圖,在平面直角坐標(biāo)系中,觀察描出的這些點(diǎn)的分布,作出函數(shù)圖象;研究函數(shù)并結(jié)合圖象與表格,回答下列問題:點(diǎn),,,在函數(shù)圖象上,則______,______;填“”,“”或“”當(dāng)函數(shù)值時(shí),求自變量x的值;在直線的右側(cè)的函數(shù)圖象上有兩個(gè)不同的點(diǎn),,且,求的值;若直線與函數(shù)圖象有三個(gè)不同的交點(diǎn),求a的取值范圍.2.如圖,拋物線與軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)的坐標(biāo)為,過點(diǎn)作軸的垂線交拋物線于點(diǎn).(1)求點(diǎn)、點(diǎn)、點(diǎn)的坐標(biāo);(2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),直線交于點(diǎn),試探究當(dāng)為何值時(shí),四邊形是平行四邊形;(3)在點(diǎn)的運(yùn)動(dòng)過程中,是否存在點(diǎn),使是以為直角邊的直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.3.某數(shù)學(xué)興趣小組在探究函數(shù)y=x2﹣2|x|+3的圖象和性質(zhì)時(shí),經(jīng)歷了以下探究過程:(1)列表(完成下列表格).x…﹣3﹣2﹣1﹣0123…y…632236…(2)描點(diǎn)并在圖中畫出函數(shù)的大致圖象;(3)根據(jù)函數(shù)圖象,完成以下問題:①觀察函數(shù)y=x2﹣2|x|+3的圖象,以下說法正確的有(填寫正確的序號(hào))A.對(duì)稱軸是直線x=1;B.函數(shù)y=x2﹣2|x|+3的圖象有兩個(gè)最低點(diǎn),其坐標(biāo)分別是(﹣1,2)、(1,2);C.當(dāng)﹣1<x<1時(shí),y隨x的增大而增大;D.當(dāng)函數(shù)y=x2﹣2|x|+3的圖象向下平移3個(gè)單位時(shí),圖象與x軸有三個(gè)公共點(diǎn);E.函數(shù)y=(x﹣2)2﹣2|x﹣2|+3的圖象,可以看作是函數(shù)y=x2﹣2|x|+3的圖象向右平移2個(gè)單位得到.②結(jié)合圖象探究發(fā)現(xiàn),當(dāng)m滿足時(shí),方程x2﹣2|x|+3=m有四個(gè)解.③設(shè)函數(shù)y=x2﹣2|x|+3的圖象與其對(duì)稱軸相交于P點(diǎn),當(dāng)直線y=n和函數(shù)y=x2﹣2|x|+3圖象只有兩個(gè)交點(diǎn)時(shí),且這兩個(gè)交點(diǎn)與點(diǎn)P所構(gòu)成的三角形是等腰直角三角形,求n的值.4.在正方形ABCD中,AB=4cm,AC為對(duì)角線,AC上有一動(dòng)點(diǎn)P,M是AB邊的中點(diǎn),連接PM、PB,設(shè)A、P兩點(diǎn)間的距離為xcm,PM+PB長度為ycm.小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完整:(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.(3)結(jié)合畫出的函數(shù)圖象,解決問題:PM+PB的長度最小值約為______cm.5.問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC,BC為邊向外側(cè)作正方形ACDE和正方形BCFG.(1)△ABC和△DCF面積的關(guān)系是______________;(請(qǐng)?jiān)跈M線上填寫“相等”或“不等”)(2)拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)結(jié)合圖2給出證明;若不成立,請(qǐng)說明理由;(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,運(yùn)用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請(qǐng)求出最大值,如果沒有,請(qǐng)說明理由.圖1圖2圖36.如圖,拋物線經(jīng)過三點(diǎn),該拋物線的頂點(diǎn)為D.(1)求該拋物線L的表達(dá)式和點(diǎn)D的坐標(biāo);(2)拋物線與拋物線L關(guān)于直線對(duì)稱,P是拋物線L的B、M段上的一點(diǎn),過點(diǎn)P作y軸的平行線交拋物線與點(diǎn)Q,點(diǎn)P、Q關(guān)于拋物線L的對(duì)稱軸對(duì)稱點(diǎn)分別為M、N.試探究是否存在一點(diǎn)P,使得四邊形為正方形?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.7.綜合與探究.如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣3x+4與x軸分別交于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C.點(diǎn)P是線段OA上的一個(gè)動(dòng)點(diǎn),沿OA以每秒1個(gè)單位長度的速度由點(diǎn)O向點(diǎn)A運(yùn)動(dòng),過點(diǎn)P作DP⊥x軸,交拋物線于點(diǎn)D,交直線AC于點(diǎn)E,連接BE.(1)求直線AC的表達(dá)式;(2)在點(diǎn)P運(yùn)動(dòng)過程中,運(yùn)動(dòng)時(shí)間為何值時(shí),EC=ED?(3)在點(diǎn)P運(yùn)動(dòng)過程中,△EBP的周長是否存在最小值?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.8.如果拋物線C1:與拋物線C2:的開口方向相反,頂點(diǎn)相同,我們稱拋物線C2是C1的“對(duì)頂”拋物線.(1)求拋物線的“對(duì)頂”拋物線的表達(dá)式;(2)將拋物線的“對(duì)頂”拋物線沿其對(duì)稱軸平移,使所得拋物線與原拋物線形成兩個(gè)交點(diǎn)M、N,記平移前后兩拋物線的頂點(diǎn)分別為A、B,當(dāng)四邊形AMBN是正方形時(shí),求正方形AMBN的面積.(3)某同學(xué)在探究“對(duì)頂”拋物線時(shí)發(fā)現(xiàn):如果拋物線C1與C2的頂點(diǎn)位于x軸上,那么系數(shù)b與d,c與e之間的關(guān)系是確定的,請(qǐng)寫出它們之間的關(guān)系.9.綜合與探究如圖,已知二次函數(shù)的圖像與軸交于,B兩點(diǎn),與軸交于點(diǎn)C,直線經(jīng)過B,C兩點(diǎn)(1)求二次函數(shù)的解析式;(2)點(diǎn)P是線段BC上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線于點(diǎn)Q,交拋物線于點(diǎn)D,當(dāng)點(diǎn)Q是線段PD的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);(3)在(2)的條件下,若點(diǎn)M是直線BC上一點(diǎn),N是平面內(nèi)一點(diǎn),當(dāng)以P,D,M,N為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫出點(diǎn)N的坐標(biāo).10.已知函數(shù),某興趣小組對(duì)其圖像與性質(zhì)進(jìn)行了探究,請(qǐng)補(bǔ)充完整探究過程.…-3-2-112345……-6-22-2-1-2…(1)請(qǐng)根據(jù)給定條件直接寫出的值;(2)如圖已經(jīng)畫出了該函數(shù)的部分圖像,請(qǐng)你根據(jù)上表中的數(shù)據(jù)在平面直角坐標(biāo)系中描點(diǎn)、連線,補(bǔ)充該函數(shù)圖像,并寫出該函數(shù)的一條性質(zhì);(3)若,結(jié)合圖像,直接寫出的取值范圍.二、中考幾何壓軸題11.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.12.愛好思考的小明在探究兩條直線的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線相互垂直的三角形“中垂三角形”,如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.(特例研究)(1)如圖1,當(dāng)tan∠PAB=1,c=4時(shí),a=b=;(歸納證明)(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖2證明你的結(jié)論;(拓展證明)(3)如圖4,?ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF交BE相較于點(diǎn)G,AD=3,AB=3,求AF的長.13.我們定義:連結(jié)凸四邊形一組對(duì)邊中點(diǎn)的線段叫做四邊形的“準(zhǔn)中位線”.(1)概念理解:如圖1,四邊形中,為的中點(diǎn),,是邊上一點(diǎn),滿足,試判斷是否為四邊形的準(zhǔn)中位線,并說明理由.(2)問題探究:如圖2,中,,,,動(dòng)點(diǎn)以每秒1個(gè)單位的速度,從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)以每秒6個(gè)單位的速度,從點(diǎn)出發(fā)沿射線運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).為線段上任意一點(diǎn),連接并延長,射線與點(diǎn)構(gòu)成的四邊形的兩邊分別相交于點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為.問為何值時(shí),為點(diǎn)構(gòu)成的四邊形的準(zhǔn)中位線.(3)應(yīng)用拓展:如圖3,為四邊形的準(zhǔn)中位線,,延長分別與,的延長線交于點(diǎn),請(qǐng)找出圖中與相等的角并證明.14.定義:有一組鄰邊相等且對(duì)角互補(bǔ)的四邊形叫做等補(bǔ)四邊形.(問題理解)(1)如圖1,點(diǎn)A、B、C在⊙O上,∠ABC的平分線交⊙O于點(diǎn)D,連接AD、CD.求證:四邊形ABCD是等補(bǔ)四邊形;(拓展探究)(2)如圖2,在等補(bǔ)四邊形ABCD中,AB=AD,連接AC,AC是否平分∠BCD?請(qǐng)說明理由;(升華運(yùn)用)(3)如圖3,在等補(bǔ)四邊形ABCD中,AB=AD,其外角∠EAD的平分線交CD的延長線于點(diǎn)F.若CD=6,DF=2,求AF的長.15.等腰△ABC,AB=AC,∠BAC=120°,AF⊥BC于F,將腰AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至AB′,記旋轉(zhuǎn)角為α,連接BB′,過C作CE垂直于直線BB′,垂足為E,連接CB′.(1)問題發(fā)現(xiàn):如圖1,當(dāng)時(shí),的度數(shù)為_______;連接EF,則的值為________.(2)拓展探究:當(dāng),且時(shí),①(1)中的兩個(gè)結(jié)論是否仍然成立?如果成立,請(qǐng)僅就圖2的情形進(jìn)行證明;如果不成立,請(qǐng)說明理由;②解決問題:當(dāng)A,E,F(xiàn)三點(diǎn)共線時(shí),請(qǐng)直接寫出的值.16.綜合與實(shí)踐數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們結(jié)合下述情境,提出一個(gè)數(shù)學(xué)問題:如圖1,四邊形ABCD是正方形,四邊形BEDF是矩形.探究展示:“興趣小組”提出的問題是:“如圖2,連接CE.求證:AE⊥CE.”并展示了如下的證明方法:證明:如圖3,分別連接AC,BD,EF,AF.設(shè)AC與BD相交于點(diǎn)O.∵四邊形ABCD是正方形,∴OA=OC=AC,OB=OD=BD,且AC=BD.又∵四邊形BEDF是矩形,∴EF經(jīng)過點(diǎn)O,∴OE=OF=EF,且EF=BD.∴OE=OF,OA=OC.∴四邊形AECF是平行四邊形.(依據(jù)1)∵AC=BD,EF=BD,∴AC=EF.∴四邊形AECF是矩形.(依據(jù)2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述證明過程中“依據(jù)1”“依據(jù)2”分別是什么?拓展再探:(2)“創(chuàng)新小組”受到“興趣小組”的啟發(fā),提出的問題是:“如圖4,分別延長AE,F(xiàn)B交于點(diǎn)P,求證:EB=PB.”請(qǐng)你幫助他們寫出該問題的證明過程.(3)“智慧小組”提出的問題是:若∠BAP=30°,AE=,求正方形ABCD的面積.請(qǐng)你解決“智慧小組”提出的問題.17.在與中,且,點(diǎn)D始終在線段AB上(不與A、B重合).(1)問題發(fā)現(xiàn):如圖1,若度,的度數(shù)______,______;(2)類比探究:如圖2,若度,試求的度數(shù)和的值;(3)拓展應(yīng)用:在(2)的條件下,M為DE的中點(diǎn),當(dāng)時(shí),BM的最小值為多少?直接寫出答案.18.在矩形ABCD中,(k為常數(shù)),點(diǎn)P是對(duì)角線BD上一動(dòng)點(diǎn)(不與B,D重合),將射線PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°與射線CB交于點(diǎn)E,連接AE.(1)特例發(fā)現(xiàn):如圖1,當(dāng)k=1時(shí),將點(diǎn)P移動(dòng)到對(duì)角線交點(diǎn)處,可發(fā)現(xiàn)點(diǎn)E與點(diǎn)B重合,則=,∠AEP=;當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),∠AEP的大小(填“改變”或“不變”);(2)類比探究:如圖2,若k≠1時(shí),當(dāng)k的值確定時(shí),請(qǐng)?zhí)骄俊螦EP的大小是否會(huì)隨著點(diǎn)P的移動(dòng)而發(fā)生變化,并說明理由;(3)拓展應(yīng)用:當(dāng)k≠1時(shí),如圖2,連接PC,若PC⊥BD,,PC=2,求AP的長.19.如圖:兩個(gè)菱形與菱形的邊在同一條直線上,邊長分別為a和b,點(diǎn)C在上,點(diǎn)M為的中點(diǎn).(1)觀察猜想:如圖①,線段與線段的數(shù)量關(guān)系是______________.(2)拓展探究:如圖②,,將圖①中的菱形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至圖②位置,其他條件不變,連接,①猜想線段與線段的數(shù)量關(guān)系,并說明理由.②求出線段與所成的最小夾角.(3)解決問題:如圖③,若將題目中的菱形改為矩形,且,請(qǐng)直接寫出線段與線段的數(shù)量關(guān)系.20.類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整.原題:如圖1,在平行四邊形中,點(diǎn)是的中點(diǎn),點(diǎn)是線段上一點(diǎn),的延長線交射線于點(diǎn).若,求的值.(1)嘗試探究在圖1中,過點(diǎn)作交于點(diǎn),則和的數(shù)量關(guān)系是_________,和的數(shù)量關(guān)系是_________,的值是_________.(2)類比延伸如圖2,在原題的條件下,若,則的值是_________(用含有的代數(shù)式表示),試寫出解答過程.(3)拓展遷移如圖3,梯形中,,點(diǎn)是的延長線上的一點(diǎn),和相交于點(diǎn).若,,,則的值是________(用含、的代數(shù)式表示).【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、二次函數(shù)壓軸題1.A解析:(1)見解析;(2)①,;②x=3或x=-1;③2;④【分析】(1)根據(jù)函數(shù)圖像的畫法,從左至右依次連接個(gè)點(diǎn),即可解決;(2)①根據(jù)A點(diǎn)與B點(diǎn)的橫坐標(biāo),判斷兩點(diǎn)所在的函數(shù)圖像,然后根據(jù)函數(shù)的性質(zhì)解決即可;根據(jù)C點(diǎn)與D點(diǎn)的縱坐標(biāo),判斷兩點(diǎn)所在的函數(shù)圖像,然后結(jié)合函數(shù)圖像解決即可.②當(dāng)時(shí),判斷其所在的函數(shù)圖像,然后結(jié)合函數(shù)解析式計(jì)算解決即可.③由圖可知時(shí),所以兩點(diǎn)在函數(shù)的圖像上,然后根據(jù)函數(shù)的對(duì)稱性解決即可.④結(jié)合函數(shù)圖像,與函數(shù)圖象有三個(gè)不同的交點(diǎn),可知必須與兩函數(shù)圖像分別相交才可以,據(jù)此解決即可;【詳解】解:如圖所示:,,A與B在上,y隨x的增大而增大,;,,C與D在上,觀察圖象可得;②當(dāng)時(shí),,不符合;當(dāng)時(shí),,或;,在的右側(cè),時(shí),點(diǎn)關(guān)于對(duì)稱,,;④由圖象可知,當(dāng)與分段函數(shù)分別相交時(shí)才會(huì)有三個(gè)不同的交點(diǎn),觀察函數(shù)圖像y>0,且y<2,故a的取值范圍為.2.C解析:(1)(2)當(dāng),四邊形是平行四邊形(3)存在,點(diǎn)的坐標(biāo)為,,【分析】(1)根據(jù)函數(shù)解析式列方程即可;(2)根據(jù)平行四邊形的判定,用含未知數(shù)的值表示QM的長度,從而可求解;(3)設(shè)Q點(diǎn)的坐標(biāo)為,分兩種情況討論:當(dāng)時(shí),由勾股定理可得:,當(dāng)時(shí),由勾股定理可得:,可解出的值.【詳解】(1)令,則,C點(diǎn)的坐標(biāo)為(0,2);令,則解得,點(diǎn)A為(-1,0);點(diǎn)B為(4,0)∴(2)如圖1所示:點(diǎn)C與點(diǎn)D關(guān)于軸對(duì)稱,點(diǎn),設(shè)直線BD的解析式為,將代入得:解得∴直線BD的解析式為:∵∴當(dāng)時(shí),四邊形是平行四邊形設(shè)Q點(diǎn)的坐標(biāo)為,則∴解得(不合題意,舍去)∴當(dāng),四邊形是平行四邊形(3)存在,設(shè)Q點(diǎn)的坐標(biāo)為∵是以BD為直角邊的直角三角形∴當(dāng)時(shí),由勾股定理可得:即解得(不合題意,舍去)∴Q點(diǎn)的坐標(biāo)為當(dāng)時(shí),由勾股定理可得:即解得Q點(diǎn)的坐標(biāo)為綜上所述:點(diǎn)的坐標(biāo)為,,.【點(diǎn)睛】本題考查了一次函數(shù)和拋物線的綜合問題,解題的關(guān)鍵在于拿出函數(shù)解析式,會(huì)用含未知數(shù)的代數(shù)式表示出關(guān)鍵的點(diǎn)的坐標(biāo)和線段的長度.3.B解析:(1)詳見解析;(2)詳見解析;(3)①B、D、E;②2<m<3;③n=2或6.【分析】(1)把x=﹣,0,分別代入函數(shù)表達(dá)式即可求解;(2)描點(diǎn)確定函數(shù)圖象;(3)①結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)依次判斷各項(xiàng)即可求解;②根據(jù)二次函數(shù)的圖象即可解答;③如圖,當(dāng)直線y=n處于直線m或m′的位置時(shí),由此即可求解.【詳解】(1)把x=﹣,0,分別代入函數(shù)表達(dá)式得:y=,3,;故答案為,3,;(2)描點(diǎn)確定函數(shù)圖象如下:(3)①A.對(duì)稱軸是直線x=0,故錯(cuò)誤;B.函數(shù)y=x2﹣2|x|+3的圖象有兩個(gè)最低點(diǎn),其坐標(biāo)分別是(﹣1,2)、(1,2),故正確;C.當(dāng)﹣1<x<1時(shí),函數(shù)在y軸右側(cè),y隨x的增大而增大,故錯(cuò)誤;D.當(dāng)函數(shù)y=x2﹣2|x|+3的圖象向下平移3個(gè)單位時(shí),圖象與x軸有三個(gè)公共點(diǎn),正確;E.函數(shù)y=(x﹣2)2﹣2|x﹣2|+3的圖象,可以看作是函數(shù)y=x2﹣2|x|+3的圖象向右平移2個(gè)單位得到,正確;故答案為:B、D、E;②從圖象看,2<m<3時(shí),方程x2﹣2|x|+3=m有四個(gè)解;③如圖,當(dāng)直線y=n處于直線m或m′的位置時(shí),點(diǎn)P和圖象上的點(diǎn)構(gòu)成等腰直角三角形,即n=2或6.【點(diǎn)睛】本題考查了二次函數(shù)的圖象和性質(zhì),正確的識(shí)別圖象,利用數(shù)形結(jié)合思想是解決問題的關(guān)鍵.4.H解析:(1)5.0;(2)見解析;(3)x=2時(shí),函數(shù)有最小值y=4.5【分析】(1)通過作輔助線,應(yīng)用三角函數(shù)可求得HM+HN的值即為x=2時(shí),y的值;(2)可在網(wǎng)格圖中直接畫出函數(shù)圖象;(3)由函數(shù)圖象可知函數(shù)的最小值.【詳解】(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)H時(shí),AH=3,作HN⊥AB于點(diǎn)N.∵在正方形ABCD中,AB=4cm,AC為對(duì)角線,AC上有一動(dòng)點(diǎn)P,M是AB邊的中點(diǎn),∴∠HAN=45°,∴AN=HN=AH?sin45°=3,∴HM,HB,∴HM+HN==≈≈2.125+2.834≈5.0.故答案為:5.0;(2)(3)根據(jù)函數(shù)圖象可知,當(dāng)x=2時(shí),函數(shù)有最小值y=4.5.故答案為:4.5.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.5.B解析:(1)相等;(2)成立,理由見解析;(3)陰影部分的面積和有最大值,最大值為25【解析】解:(1)相等;(2)成立;理由如下:如圖,延長BC到點(diǎn)P,過點(diǎn)A作AP⊥BP于點(diǎn)P;過點(diǎn)D作DQ⊥FC于點(diǎn)Q.∴∠APC=∠DQC=90°.∵四邊形ACDE、四邊形BCFG均為正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=BC?AP,S△DFC=FC?DQ,∴S△ABC=S△DFC.(3)圖中陰影部分的面積和有最大值理由:由(2)的結(jié)論可知:設(shè)AC=m,則BD=10-m,∵AC⊥BD.∴.∴∴陰影部分的面積和有最大值,最大值為256.D解析:(1),點(diǎn)D的坐標(biāo)為;(2)存在,.【分析】(1)將三點(diǎn)坐標(biāo)代入,利用待定系數(shù)法可求出拋物線L的表達(dá)式,再由拋物線對(duì)稱軸公式可求出點(diǎn)D的坐標(biāo);(2)根據(jù)題意可求得拋物線的表達(dá)式,設(shè)點(diǎn)P的橫坐標(biāo)為m,則可由已知分別表示出點(diǎn)Q、M、N的坐標(biāo),利用正方形的性質(zhì)則可列出方程,求解后即可得出點(diǎn)P的橫坐標(biāo).【詳解】解:(1)將代入得:,解得,∴該拋物線L的表達(dá)式為:;∵拋物線的頂點(diǎn)為D,∴當(dāng)時(shí),,∴點(diǎn)D的坐標(biāo)為;(2)存在;如圖所示:∵拋物線與拋物線L關(guān)于直線對(duì)稱,,∴,設(shè)拋物線的表達(dá)式為,將代入得,∴拋物線的表達(dá)式為設(shè)點(diǎn)P的橫坐標(biāo)為m,∵PQ∥y軸,則Q的橫坐標(biāo)為m,∵點(diǎn)P、Q關(guān)于拋物線L的對(duì)稱軸對(duì)稱點(diǎn)分別為M、N.∴M、N的橫坐標(biāo)為5-m.∴PM=5-m-m=5-2m.∵點(diǎn)P的縱坐標(biāo)為,點(diǎn)Q的縱坐標(biāo)為,∴PQ=()-()=,當(dāng)PM=PQ時(shí),四邊形為正方形,∴解得,∵P是拋物線L的B、M段上的一點(diǎn),∴m<5-m,解得m<.∴.∴點(diǎn)P的橫坐標(biāo)為.【點(diǎn)睛】本題考查了二次函數(shù)的圖象與性質(zhì),熟練掌握待定系數(shù)法及二次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.7.A解析:(1)直線AC的表達(dá)式為y=x+4;(2)運(yùn)動(dòng)時(shí)間為0或(4﹣)秒時(shí),EC=ED;(3)【分析】(1)由拋物線的解析式中x,y分別為0,求出A,C的坐標(biāo),再利用待定系數(shù)法確定直線AC的解析式;(2)設(shè)出運(yùn)動(dòng)時(shí)間為t秒,然后用t表示線段OP,CE,AP,DE的長度,利用已知列出方程即可求解;(3)利用等量代換求出△EBP的周長為AB+BE,由于AB為定值,BE最小時(shí),△EBP的周長最小,根據(jù)垂線段最短,確定點(diǎn)E的位置,解直角三角形求出OP,點(diǎn)P坐標(biāo)可求.【詳解】解:(1)∵拋物線y=﹣x2﹣3x+4與x軸分別交于A,B,交y軸于點(diǎn)C,∴當(dāng)x=0時(shí),y=4.∴C(0,4).當(dāng)y=0時(shí),﹣x2﹣3x+4=0,∴x1=﹣4,x2=1,∴A(﹣4,0),B(1,0).設(shè)直線AC的解析式為y=kx+b,∴解得:∴直線AC的表達(dá)式為y=x+4.(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,∵點(diǎn)P以每秒1個(gè)單位長度的速度由點(diǎn)O向點(diǎn)A運(yùn)動(dòng),∴OP=t.∴P(﹣t,0).∵A(﹣4,0),C(0,4),∴OA=OC=4.∴Rt△AOC為等腰直角三角形.∴∠CAO=∠ACO=45°,AC=OA=4.∵DP⊥x軸,在Rt△APE中,∠CAP=45°,∴AP=PE=4﹣t,AE=AP=(4﹣t).∴EC=AC﹣AE=t.∵E,P的橫坐標(biāo)相同,∴E(﹣t,﹣t+4),D(﹣t,﹣t2+3t+4).∴DE=(﹣t2+3t+4)﹣(﹣t+4)=﹣t2+4t.∵EC=DE,∴﹣t2+4t=t.解得:t=0或t=4﹣.∴當(dāng)運(yùn)動(dòng)時(shí)間為0或(4﹣)秒時(shí),EC=ED.(3)存在.P的坐標(biāo)為(﹣,0).在Rt△AEP中,∠OAC=45°,∴AP=EP.∴△AEB的周長為EP+BP+BE=AP+BP+BE=AB+BE.∵AB=5,∴當(dāng)BE最小時(shí),△AEB的周長最?。?dāng)BE⊥AC時(shí),BE最?。赗t△AEB中,∵∠AEB=90°,∠BAC=45°,AB=5,BE⊥AC,∴PB=AB=.∴OP=PB﹣OB=.∴P(﹣,0).【點(diǎn)睛】本題考查了二次函數(shù),一次函數(shù)的圖象和性質(zhì),垂線段最短的性質(zhì),等腰三角形的性質(zhì),利用點(diǎn)的坐標(biāo)的意義表示線段的長度,從而求出線段之間的關(guān)系是解題的關(guān)鍵.8.C解析:(1);(2)2;(3)【分析】(1)先求出拋物線C1的頂點(diǎn)坐標(biāo),進(jìn)而得出拋物線C2的頂點(diǎn)坐標(biāo),即可得出結(jié)論;(2)設(shè)正方形AMBN的對(duì)角線長為2k,得出B(2,3+2k),M(2+k,3+k),N(2?k,3+k),再用點(diǎn)M(2+k,3+k)在拋物線y=(x?2)2+3上,建立方程求出k的值,即可得出結(jié)論;(3)先根據(jù)拋物線C1,C2的頂點(diǎn)相同,得出b,d的關(guān)系式,再由兩拋物線的頂點(diǎn)在x軸,求出c,e的關(guān)系,即可得出結(jié)論.【詳解】解:(1)解:(1)∵y=x2?4x+7=(x?2)2+3,∴頂點(diǎn)為(2,3),∴其“對(duì)頂”拋物線的解析式為y=?(x?2)2+3,即y=?x2+4x?1;(2)如圖,由(1)知,A(2,3),設(shè)正方形AMBN的對(duì)角線長為2k,則點(diǎn)B(2,3+2k),M(2+k,3+k),N(2?k,3+k),∵M(jìn)(2+k,3+k)在拋物線y=(x?2)2+3上,∴3+k=(2+k?2)2+3,解得k=1或k=0(舍);∴正方形AMBN的面積為×(2k)2=2;(3)根據(jù)拋物線的頂點(diǎn)坐標(biāo)公式得,拋物線C1:y=ax2+bx+c的頂點(diǎn)為(,),拋物線C2:y=?ax2+dx+e的頂點(diǎn)為(,),∵拋物線C2是C1的“對(duì)頂”拋物線,∴,∴,∵拋物線C1與C2的頂點(diǎn)位于x軸上,∴,∴,即.【點(diǎn)睛】此題主要考查了拋物線的頂點(diǎn)坐標(biāo)公式,正方形的性質(zhì),理解新定義式解本題的關(guān)鍵.9.B解析:(1);(2)P(2,1);(3),,,【分析】(1)求出點(diǎn)B,帶入求解即可;(2)設(shè),,,根據(jù)中點(diǎn)的性質(zhì)列式計(jì)算即可;(3)根據(jù)菱形的性質(zhì)分類討論即可;【詳解】(1)令,解得:,∴,令,則,∴,把,代入中,∴,∴,,∴;(2)設(shè),,,∵Q為PD中點(diǎn),∴,∴,∴,(舍),∴;(3)①如圖,由題意可得:為菱形的邊,為菱形的對(duì)角線,由(2)可得:,,設(shè),,由可得:整理得:解得:檢驗(yàn):不合題意舍去,取如圖,為菱形的邊,同理可得:或②如圖,當(dāng)為對(duì)角線時(shí),由,,可得:重合,重合時(shí),四邊形為菱形,綜上:,,,;【點(diǎn)睛】本題主要考查了二次函數(shù)綜合,結(jié)合菱形的判定與性質(zhì)、等腰三角形的性質(zhì)和一元二次方程的求解是解題的關(guān)鍵.10.(1),,;(2)見詳解;(3)x的取值范圍是:3≤x<0或1≤x≤2.【分析】(1)先將(-1,2)和(1,-2)代入函數(shù)y=a(x-1)2++1中,列方程組解出可得a和b的值,寫出函數(shù)解析式,計(jì)算當(dāng)x=4時(shí)m的值即可;(2)描點(diǎn)并連線畫圖,根據(jù)圖象寫出一條性質(zhì)即可;(3)畫y=x-3的圖象,根據(jù)圖象可得結(jié)論.【詳解】解:(1)把(-1,2)和(1,-2)代入函數(shù)y=a(x-1)2++1中得:,解得:,∴y=(a≠0),當(dāng)x=4時(shí),m=;(2)如圖所示,性質(zhì):當(dāng)x>2時(shí),y隨x的增大而減小(答案不唯一);(3)∵a(x1)2+≥x4,∴a(x1)2++1≥x3,如圖所示,由圖象得:x的取值范圍是:3≤x<0或1≤x≤2.【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)解析式,描點(diǎn),畫函數(shù)圖象,以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的性質(zhì),利用了數(shù)形結(jié)合思想進(jìn)行分析.二、中考幾何壓軸題11.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得出,最后用互余即可得出位置關(guān)系;(2)先判斷出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出結(jié)論;(3)方法1:先判斷出最大時(shí),的面積最大,進(jìn)而求出,,即可得出最大,最后用面積公式即可得出結(jié)論.方法2:先判斷出最大時(shí),的面積最大,而最大是,即可得出結(jié)論.【詳解】解:(1)點(diǎn),是,的中點(diǎn),,,點(diǎn),是,的中點(diǎn),,,,,,,,,,,,,,,故答案為:,;(2)是等腰直角三角形.由旋轉(zhuǎn)知,,,,,,,利用三角形的中位線得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如圖2,同(2)的方法得,是等腰直角三角形,最大時(shí),的面積最大,且在頂點(diǎn)上面,最大,連接,,在中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大時(shí),面積最大,點(diǎn)在的延長線上,,,.【點(diǎn)睛】此題屬于幾何變換綜合題,主要考查了三角形的中位線定理,等腰直角三角形的判定和性質(zhì),全等三角形的判斷和性質(zhì),直角三角形的性質(zhì)的綜合運(yùn)用;解(1)的關(guān)鍵是判斷出,,解(2)的關(guān)鍵是判斷出,解(3)的關(guān)鍵是判斷出最大時(shí),的面積最大.12.(1);(2)a2+b2=5c2,證明見解析;(3)4【分析】(1)首先證明△APB,△PMN都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解決問題.(2)結(jié)論a2+b2=解析:(1);(2)a2+b2=5c2,證明見解析;(3)4【分析】(1)首先證明△APB,△PMN都是等腰直角三角形,求出PA、PB、PN、PM,再利用勾股定理即可解決問題.(2)結(jié)論a2+b2=5c2.設(shè)MP=x,NP=y,則AP=2x,BP=2y,利用勾股定理分別求出a2、b2、c2即可解決問題.(3)取AB中點(diǎn)H,連接FH并且延長交DA的延長線于P點(diǎn),首先證明△ABF是中垂三角形,利用(2)中結(jié)論列出方程即可解決問題.【詳解】(1)解:如圖中,∵CN=AN,CM=BM,∴MN∥AB,MN=AB=2,∵tan∠PAB=1,∴∠PAB=∠PBA=∠PNM=∠PMN=45°,
∴PN=PM=2,PB=PA=4,
∴AN=BM=,∴b=AC=2AN=4,a=BC=4,∴,故答案為:;(2)結(jié)論a2+b2=5c2.證明:如圖中,連接MN.∵AM、BN是中線,
∴MN∥AB,MN=AB,∴△MPN∽△APB,∴,設(shè)MP=x,NP=y,則AP=2x,BP=2y,
∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2,b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.(3)解:如圖中,∵四邊形ABCD是平行四邊形,∴AE∥BF,∴,在△AGE和△FGB中,,∴△AGE≌△FGB,
∴AG=FG,取AB中點(diǎn)H,連接FH并且延長交DA的延長線于P點(diǎn),
同理可證△APH≌△BFH,
∴AP=BF,PE=2BF=CF,
即PE∥CF,PE=CF,
∴四邊形CEPF是平行四邊形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,∵AB=3,BF=AD=,∴9+AF2=5×,∴AF=4.【點(diǎn)睛】本題是四邊形綜合題,考查了三角形中位線定理、平行四邊形的判定和性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)添加常用輔助線構(gòu)造全等三角形,學(xué)會(huì)利用新的結(jié)論解決問題,屬于中考?jí)狠S題.13.(1)是,理由見解析;(2)或或;(3),證明見解析.【分析】(1)證明,可得,又點(diǎn)F為CD中點(diǎn),即可得出結(jié)論;(2)當(dāng)為點(diǎn)構(gòu)成的四邊形的準(zhǔn)中位線.則M、N一定是中點(diǎn),再分兩種情況討論:和,根解析:(1)是,理由見解析;(2)或或;(3),證明見解析.【分析】(1)證明,可得,又點(diǎn)F為CD中點(diǎn),即可得出結(jié)論;(2)當(dāng)為點(diǎn)構(gòu)成的四邊形的準(zhǔn)中位線.則M、N一定是中點(diǎn),再分兩種情況討論:和,根據(jù)平行線分線段成比例列方程即可求解;(3)連接,取的中點(diǎn),連接,得兩條中位線,根據(jù)中位線定理,得平行,可找到相等角和線段,從而可得是等腰三角形,進(jìn)而可得.【詳解】解:(1)是四邊形的準(zhǔn)中位線,理由如下:∵,∴.又∵,,∴,∴,∴.又∵為中點(diǎn),∴為四邊形的準(zhǔn)中位線.(2)當(dāng)為點(diǎn)構(gòu)成的四邊形的準(zhǔn)中位線時(shí).①如圖,當(dāng)時(shí),則需滿足且為中點(diǎn).∴,解得:;②如圖,當(dāng)時(shí),則需滿足且為中點(diǎn).∴,解得:,.綜上:當(dāng)或或時(shí),為點(diǎn)構(gòu)成的四邊形的準(zhǔn)中位線.(3).證明如下:如圖,連接,取的中點(diǎn),連接,.,分別是,的中點(diǎn),∴,,∴.∵分別是,的中點(diǎn),∴,,∴.∵,∴,∴.∴.【點(diǎn)睛】本題圍繞線段的中點(diǎn)考查了等腰三角形判定及性質(zhì)、平行線分線段成比例、三角形中位線等知識(shí)點(diǎn),考查范圍廣,綜合性強(qiáng).解(2)的關(guān)鍵是由準(zhǔn)中位線圖形特征得出四邊形有一組對(duì)邊平行,解(3)的關(guān)鍵是構(gòu)造出和中位線定理相關(guān)的圖形.14.(1)見解析;(2)AC平分∠BCD,理由見解析;(3)AF=4.【分析】(1)由圓內(nèi)接四邊形互補(bǔ)可知∠A+∠C=180°,∠ABC+∠ADC=180°,再證AD=CD,即可根據(jù)等補(bǔ)四邊形的解析:(1)見解析;(2)AC平分∠BCD,理由見解析;(3)AF=4.【分析】(1)由圓內(nèi)接四邊形互補(bǔ)可知∠A+∠C=180°,∠ABC+∠ADC=180°,再證AD=CD,即可根據(jù)等補(bǔ)四邊形的定義得出結(jié)論;(2)過點(diǎn)A分別作AE⊥BC于點(diǎn)E,AF垂直CD的延長線于點(diǎn)F,證△ABE≌△ADF,得到AE=AF,根據(jù)角平分線的判定可得出結(jié)論;
(3)連接AC,先證∠EAD=∠BCD,推出∠FCA=∠FAD,再證△ACF∽△DAF,利用相似三角形對(duì)應(yīng)邊的比相等可求出AF的長.【詳解】(1)證明:∵四邊形ABCD為圓內(nèi)接四邊形∴∠A+∠C=180°,∠ABC+∠ADC=180°.∵BD平分∠ABC∴∠ABD=∠CBD∴弧AD=弧CD∴AD=CD∴四邊形ABCD是等補(bǔ)四邊形(2)AC平分∠BCD,理由如下:過點(diǎn)A作AE⊥BC于E,AF⊥CD于F則∠AEB=∠AFD=90°∵四邊形ABCD是等補(bǔ)四邊形∴∠ADC+∠B=180°又∵∠ADC+∠ADF=180°∴∠B=∠ADF在△AFD與△AEB中∴≌∴∴點(diǎn)A一定在∠BCD的平分線上即AC平分∠BCD.(3)連接AC同(2)理得∠EAD=∠BCD由(2)知AC平分∠BCD所以∠FCA=∠BCD同理∠FAD=∠EAD∴∠FCA=∠FAD.又∵∠F=∠F∴△FAD∽△FCA∴即∴AF=4【點(diǎn)睛】本題考查了新定義等補(bǔ)四邊形,圓的有關(guān)性質(zhì),全等三角形的判定與性質(zhì),角平分線的判定,相似三角形的判定與性質(zhì)等,解題關(guān)鍵是要能夠通過自主學(xué)習(xí)來進(jìn)行探究,運(yùn)用等.15.(1)∠CB′E=60°,;(2)①兩個(gè)結(jié)論成立,理由見解析;(3)或.【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)以及直角三角形的性質(zhì)解答即可;(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)和直解析:(1)∠CB′E=60°,;(2)①兩個(gè)結(jié)論成立,理由見解析;(3)或.【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)以及直角三角形的性質(zhì)解答即可;(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)和直角三角形的性質(zhì)解答即可;②當(dāng)A,E,F(xiàn)三點(diǎn)共線時(shí),分兩種情況討論,利用三角函數(shù)解答即可.【詳解】解:(1)∵AB=AC,∠BAC=120°,AF⊥BC,∴∠ABC=∠ACB=30°,BF=FC,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AB=AC=AB′,∴∠ABB′=∠AB′B==70°,∵AC=AB′,∠B′AC=120°-40°=80°,∴∠AB′C==50°,∴∠CB′E=180°-70°-50°=60°,連接EF,∵BF=FC,則EF為直角三角形BEC斜邊上的中線,∴EF=BF=FC,在Rt△ABF中,,∴;(2)①兩個(gè)結(jié)論成立,理由如下:連接EF,根據(jù)旋轉(zhuǎn)的性質(zhì)得:AB=AC=AB′,等腰△ABB′中,∠BAB′=α,則∠AB′B==90°?α,等腰△AB′C中,∠CAB′=α?120°,則∠AB′C==150°?α,∴;∵AB=AC,AF⊥BC.∴∠FAC=60°,Rt△CEB′中,=sin60°=,Rt△CFA中,=sin60°=,∴,∵∠FCE=∠ACB′=30°+∠ACE,∴△CEF~△CB′A∴;②當(dāng)A,E,F(xiàn)三點(diǎn)共線時(shí),分以下兩種情況討論,(Ⅰ)當(dāng)點(diǎn)E在FA的延長線上時(shí),如圖,由①可知,∠B'=60°,∵CE⊥BB',而BC=2EF=2BF,EB=CE,設(shè)BF=x,則EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB+B'E=,∴;(Ⅱ)當(dāng)點(diǎn)E在AF的延長線上時(shí),如圖,同理可得,∠CB'E=60°,BC=2EF=2BF,∵CE⊥BB',∴∠CEB'=∠CEB=90°,EB=CE,設(shè)BF=x,則EF=CF=x,EB=CE=,在Rt△CB'E中,B'E=CE,∴BB'=EB-B'E=,∴;綜上,的值為或.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì)、特殊角的三角函數(shù)值等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.16.(1)依據(jù)1:對(duì)角線互相平分的四邊形是平行四邊形,依據(jù)2:對(duì)角線相等的平行四邊形是矩形;(2)見解析;(3)4【分析】(1)借助問題情景即可得出結(jié)論;(2)連接CE,先根據(jù)已證結(jié)論及正方形的性解析:(1)依據(jù)1:對(duì)角線互相平分的四邊形是平行四邊形,依據(jù)2:對(duì)角線相等的平行四邊形是矩形;(2)見解析;(3)4【分析】(1)借助問題情景即可得出結(jié)論;(2)連接CE,先根據(jù)已證結(jié)論及正方形的性質(zhì)得出AB=BC,∠1=∠4,再由矩形性質(zhì)證得∠PBA=∠EBC,得出△PBA≌△EBC,即可得出結(jié)論;(3)過點(diǎn)B作BM⊥AP,垂足為M.結(jié)合(2)所得結(jié)論利用等腰直角三角形的性質(zhì)可得BM=PM=ME,設(shè)BM=ME=x,則AM=x+-1.則根據(jù)三角函數(shù)解直角三角形求出x=1,再由直角三角形的性質(zhì)求出正方形的邊長,即可得出結(jié)果.【詳解】解:(1)依據(jù)1:對(duì)角線互相平分的四邊形是平行四邊形.依據(jù)2:對(duì)角線相等的平行四邊形是矩形.(2)證明:連接CE,由題意得,∠CEA=90°,∴∠1+∠2=180°-∠AEC=90°.∵四邊形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠3+∠4=180°-∠ABC=90°.∵∠2=∠3.∴∠1=∠4.∵四邊形EBFD是矩形,∴∠EBF=90°.∴∠PBE=180°-∠EBF=90°.∴∠PBE=∠ABC.∴∠PBE+∠EBA=∠ABC+∠EBA.即∠PBA=∠EBC.∴△PBA≌△EBC.∴PB=EB.(3)解:過點(diǎn)B作BM⊥AP,垂足為M.由(2)可知,PB=BE,∠PBE=90°.∴BM=PM=ME.設(shè)BM=ME=x,則AM=x+-1.∵在Rt△ABM中,∠BAM=30°.∴AB=2BM,tan∠BAM=,解得x=1.∴AB=2,∴S正方形ABCD=2×2=4.【點(diǎn)睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定與性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),熟練掌握特殊四邊形、全等三角形及三角函數(shù)等相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.17.(1)90度;1;(2)的度數(shù)為90度,的值為;(3)BM的最小值為1.【分析】(1)度,利用SAS證明,即可得出,的值為1;(2)度,證明,即可得出,;(3)當(dāng)CD最小時(shí),即CD垂直于AB解析:(1)90度;1;(2)的度數(shù)為90度,的值為;(3)BM的最小值為1.【分析】(1)度,利用SAS證明,即可得出,的值為1;(2)度,證明,即可得出,;(3)當(dāng)CD最小時(shí),即CD垂直于AB時(shí),CD最小,此時(shí)DE最小,而BM是直角三角形DBE斜邊上的中線,直角三角形斜邊上的中線等于斜邊的一半.【詳解】(1)①∵∴∴∵,∴∴,∴∴,∴,的值為1;(2)在中,,令,則,同理令,∴,∴①∵即∴②有①②得∴,∴(3)在中,,∴,當(dāng)CD最小時(shí),即CD垂直于AB時(shí),CD最小,此時(shí)DE最小,而,∴,而BM是直角三角形DBE斜邊上的中線,∴【點(diǎn)睛】本題涉及全等三角形的性質(zhì)與判定、相似三角形的性質(zhì)與判定、特殊的三角函數(shù)值和直角三角形的性質(zhì).是一個(gè)綜合性比較強(qiáng)的題目,要熟練掌握各個(gè)知識(shí)點(diǎn).18.(1)1,45°,不變;(2)∠AEP的大小不變,理由見解析;(3).【分析】(1)當(dāng)點(diǎn)P為對(duì)角線交點(diǎn)時(shí),根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過點(diǎn)P分別作AB,BC的垂線,垂足分解析:(1)1,45°,不變;(2)∠AEP的大小不變,理由見解析;(3).【分析】(1)當(dāng)點(diǎn)P為對(duì)角線交點(diǎn)時(shí),根據(jù)正方形的性質(zhì)可得出結(jié)論,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM≌△PEN,可得∠AEP的大小不變;(2)類似(1),過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.證△PAM∽△PEN,可得∠AEP的大小不變;(3)利用(2)的結(jié)論,證BE=EC.再證△ABE∽△BCD,利用比例式求出k,再利用三角函數(shù)求出AP的長.【詳解】解:(1)如圖,∵k=1,∴在矩形ABCD是正方形,∵點(diǎn)P移動(dòng)到對(duì)角線交點(diǎn)處,∴PA=PE,∠AEP=45°,故,如圖,當(dāng)點(diǎn)P移動(dòng)到其它位置時(shí),過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是正方形,∴∠MBN=90°,PN=PM,∴四邊形PMBN是正方形,∴∠MPN=90°,∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM≌△PEN,∴PA=PE,∴∠AEP=45°,故,∠AEP的大小不變;故答案為:1,45°,不變;(2)∠AEP的大小不變.理由如下:過點(diǎn)P分別作AB,BC的垂線,垂足分別為M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四邊形ABCD是矩形,∴∠MBN=∠BAD=∠BCD=90°,∴四邊形PMBN是矩形,∴∠MPN=90°,PN=BM,又∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM∽△PEN,∴=.在Rt△PBM和Rt△BAD中,tan∠ABD=.在Rt△APE中,tan∠AEP=.∵k為定值,∴∠AEP的大小不變.(3)∵PC⊥BD,∠BCD=90°,∴∠PBC+∠PCB=∠PBC+∠BDC=∠BPE+∠EPC=90°.∵AE∥PC,∴∠AEB=∠PCB,∠AEP=∠EPC.∵tan∠AEP=k,tan∠ABD=k,∴∠AEP=∠ABD.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,AB∥CD,∴∠ABD=∠BDC,∴∠AEB=∠PCB=∠BDC=∠AEP=∠EPC,∠PBC=∠BPE,∴BE=PE=EC.∵∠AEB=∠BDC,∠ABE=∠BCD,∴△ABE∽△BCD,∴,即,∴BC2=2AB2,∴,k=.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(軟件與信息服務(wù))軟件需求分析階段測試試題及答案
- 2025年中職會(huì)計(jì)學(xué)(會(huì)計(jì)教育心理學(xué))試題及答案
- 2025年中職(動(dòng)物繁殖技術(shù))畜禽人工授精實(shí)操階段測試題及答案
- 2025年大學(xué)智能設(shè)備運(yùn)行與維護(hù)(智能系統(tǒng)調(diào)試)試題及答案
- 2025年大學(xué)美術(shù)(美術(shù)批評(píng))試題及答案
- 2025年高職(應(yīng)用化工技術(shù))應(yīng)用化工進(jìn)階階段測試試題及答案
- 2025年中職網(wǎng)絡(luò)技術(shù)(網(wǎng)絡(luò)設(shè)備進(jìn)階調(diào)試)試題及答案
- 2025年高職第四學(xué)年(工程造價(jià)咨詢)咨詢實(shí)務(wù)階段測試題及答案
- 2025年中職民俗學(xué)(民俗學(xué)概論)試題及答案
- 2025年高職鐵道運(yùn)輸(鐵路客運(yùn)調(diào)度)試題及答案
- 鶴壁供熱管理辦法
- 01 華為采購管理架構(gòu)(20P)
- 糖尿病逆轉(zhuǎn)與綜合管理案例分享
- 工行信息安全管理辦法
- 娛樂場所安全管理規(guī)定與措施
- 化學(xué)●廣西卷丨2024年廣西普通高中學(xué)業(yè)水平選擇性考試高考化學(xué)真題試卷及答案
- 人衛(wèi)基礎(chǔ)護(hù)理學(xué)第七版試題及答案
- 煙草物流寄遞管理制度
- 被打和解協(xié)議書范本
- 《糖尿病合并高血壓患者管理指南(2025版)》解讀
- 養(yǎng)老院敬老院流動(dòng)資產(chǎn)管理制度
評(píng)論
0/150
提交評(píng)論