江西省高安市第四中學2026屆數(shù)學九年級第一學期期末達標測試試題含解析_第1頁
江西省高安市第四中學2026屆數(shù)學九年級第一學期期末達標測試試題含解析_第2頁
江西省高安市第四中學2026屆數(shù)學九年級第一學期期末達標測試試題含解析_第3頁
江西省高安市第四中學2026屆數(shù)學九年級第一學期期末達標測試試題含解析_第4頁
江西省高安市第四中學2026屆數(shù)學九年級第一學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省高安市第四中學2026屆數(shù)學九年級第一學期期末達標測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,則BE長為()A.7.5 B.9 C.10 D.52.下列說法正確的是()A.“任意畫出一個等邊三角形,它是軸對稱圖形”是隨機事件B.某種彩票的中獎率為,說明每買1000張彩票,一定有一張中獎C.拋擲一枚質地均勻的硬幣一次,出現(xiàn)正面朝上的概率為D.“概率為1的事件”是必然事件3.將拋物線向左平移3個單位長度,再向上平移3個單位長度后,所得拋物線的解析式為()A. B.C. D.4.在一個不透明的盒子中有20個除顏色外均相同的小球,每次摸球前先將盒中的球搖勻,隨機摸出一個球記下顏色后再放回盒中,通過大量重復摸球試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.3,由此可估計盒中紅球的個數(shù)約為()A.3 B.6 C.7 D.145.如圖,是用棋子擺成的“上”字:如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):第30個“上”字需用多少枚棋子()A.122 B.120 C.118 D.1166.一個不透明的袋子中有3個白球,4個黃球和5個紅球,這些球除顏色不同外,其他完全相同.從袋子中隨機摸出一個球,則它是黃球的概率是()A. B. C. D.7.在平面直角坐標系xOy中,以點(3,4)為圓心,4為半徑的圓與y軸()A.相交 B.相切 C.相離 D.無法確定8.如圖,矩形紙片ABCD中,AB=4,AD=3,折疊紙片使AD邊落在對角線BD上,點A落在點A'處,折痕為DG,求AG的長為()A.1.5 B.2 C.2.5 D.39.如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)膶嶒灲Y果.隨著試驗次數(shù)的增加,“釘尖向上”的頻率總在某個數(shù)字附近,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是()A.0.620 B.0.618 C.0.610 D.100010.某種藥品原價為36元/盒,經過連續(xù)兩次降價后售價為25元/盒.設平均每次降價的百分率為x,根據(jù)題意所列方程正確的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=2511.學校要組織足球比賽.賽制為單循環(huán)形式(每兩隊之間賽一場).計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽.根據(jù)題意,下面所列方程正確的是()A. B. C. D.12.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(

)A.種植10棵幼樹,結果一定是“有9棵幼樹成活”B.種植100棵幼樹,結果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9二、填空題(每題4分,共24分)13.如圖,已知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.14.如圖,△ABC繞點B逆時針方向旋轉到△EBD的位置,∠A=20°,∠C=15°,E、B、C在同一直線上,則旋轉角度是_______.15.已知二次函數(shù)的頂點坐標為,且與軸一個交點的橫坐標為,則這個二次函數(shù)的表達式為__________.16.如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y=(x>0)的圖象經過該菱形對角線的交點A,且與邊BC交于點F.若點D的坐標為(3,4),則點F的坐標是_____.17.點A(1,-2)關于原點對稱的點A1的坐標為________.18.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點,E是邊AC上一點,∠ADE=∠C,∠BAC的平分線分別交DE、BC于點F、G,那么的值為__________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標為(1,0),拋物線y=﹣x2+bx+c經過A、B兩點.(1)求點A的坐標;(2)求拋物線的解析式;(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.①求點P的坐標;②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.20.(8分)某數(shù)學興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角.(1)求出樹高AB;(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)21.(8分)如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,且關于直線x=1對稱,點A的坐標為(﹣1,0).(1)求二次函數(shù)的表達式;(2)連接BC,若點P在y軸上時,BP和BC的夾角為15°,求線段CP的長度;(3)當a≤x≤a+1時,二次函數(shù)y=x2+bx+c的最小值為2a,求a的值.22.(10分)如圖所示,線段,,,,點為射線上一點,平分交線段于點(不與端點,重合).(1)當為銳角,且時,求四邊形的面積;(2)當與相似時,求線段的長;(3)設,,求關于的函數(shù)關系式,并寫出定義域.23.(10分)化簡:24.(10分)閱讀材料:材料2若一元二次方程ax2+bx+c=0(a≠0)的兩個根為x2,x2則x2+x2=﹣,x2x2=.材料2已知實數(shù)m,n滿足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.解:由題知m,n是方程x2﹣x﹣2=0的兩個不相等的實數(shù)根,根據(jù)材料2得m+n=2,mn=﹣2,所以=﹣2.根據(jù)上述材料解決以下問題:(2)材料理解:一元二次方程5x2+20x﹣2=0的兩個根為x2,x2,則x2+x2=,x2x2=.(2)類比探究:已知實數(shù)m,n滿足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:(2)思維拓展:已知實數(shù)s、t分別滿足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.25.(12分)A箱中裝有3張相同的卡片,它們分別寫有數(shù)字1,2,4;B箱中也裝有3張相同的卡片,它們分別寫有數(shù)字2,4,5;現(xiàn)從A箱、B箱中各隨機地取出1張卡片,請你用畫樹形(狀)圖或列表的方法求:(1)兩張卡片上的數(shù)字恰好相同的概率.(2)如果取出A箱中卡片上的數(shù)字作為十位上的數(shù)字,取出B箱中卡片上的數(shù)字作為個位上的數(shù)字,求兩張卡片組成的兩位數(shù)能被3整除的概率.26.一個不透明的盒子中裝有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了顏色外其余均相同.從盒中隨機摸出一枚棋子,記下顏色后放回并攪勻,再從盒子中隨機摸出一枚棋子,記下顏色,用畫樹狀圖(或列表)的方法,求兩次摸出的棋子顏色不同的概率.

參考答案一、選擇題(每題4分,共48分)1、C【分析】先設DE=x,然后根據(jù)已知條件分別用x表示AF、BF、BE的長,由DE∥AB可知,進而可求出x的值和BE的長.【詳解】解:設DE=x,則AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故選:C.本題主要考查了三角形的綜合應用,根據(jù)平行線得到相關線段比例是解題關鍵.2、D【解析】試題解析:A、“任意畫出一個等邊三角形,它是軸對稱圖形”是必然事件,選項錯誤;B.某種彩票的中獎概率為,說明每買1000張,有可能中獎,也有可能不中獎,故B錯誤;C.拋擲一枚質地均勻的硬幣一次,出現(xiàn)正面朝上的概率為.故C錯誤;D.“概率為1的事件”是必然事件,正確.故選D.3、D【分析】先得到拋物線y=x2-2的頂點坐標為(0,-2),再把點(0,-2)向左平移3個單位長度,再向上平移3個單位長度所得點的坐標為(-3,1),得到平移后拋物線的頂點坐標,然后根據(jù)頂點式寫出解析式即可.【詳解】解:拋物線y=x2-2的頂點坐標為(0,-2),把點(0,-2)向左平移3個單位長度,再向上平移3個單位長度所得點的坐標為(-3,1),

所以平移后拋物線的解析式為y=(x+3)2+1,

故選:D.本題考查了二次函數(shù)圖象與幾何變換:先把二次函數(shù)的解析式配成頂點式,然后把拋物線的平移問題轉化為頂點的平移問題.4、B【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,【詳解】解:根據(jù)題意列出方程,解得:x=6,故選B.考點:利用頻率估計概率.5、A【分析】可以將上字看做有四個端點每次每個端點增加一個,還有兩個點在里面不發(fā)生變化.找到其規(guī)律即可解答.【詳解】第1個“上”字中的棋子個數(shù)是6;第2個“上”字中的棋子個數(shù)是10;第3個“上”字中的棋子個數(shù)是14;進一步發(fā)現(xiàn)規(guī)律:第n個“上”字中的棋子個數(shù)是(4n+2).所以第30個“上”字需要4×30+2=122枚棋子.

故選:A.此題考查規(guī)律型:圖形的變化,解題關鍵是通過歸納與總結,得到其中的規(guī)律.6、B【分析】利用概率公式直接計算即可.【詳解】解:根據(jù)題意可得:袋子中有有3個白球,4個黃球和5個紅球,共12個,從袋子中隨機摸出一個球,它是黃色球的概率.故選B.本題考查概率的計算,掌握公式正確計算是本題的解題關鍵.7、A【分析】先找出圓心到y(tǒng)軸的距離,再與圓的半徑進行比較,若圓心到y(tǒng)軸的距離小于半徑,則圓與y軸相交,反之相離,若二者相等則相切故答案為A選項【詳解】根據(jù)題意,我們得到圓心與y軸距離為3,小于其半徑4,所以與y軸的關系為相交本題主要考查了圓與直線的位置關系,熟練掌握圓心距與圓到直線距離的大小關系對應的位置關系是關鍵8、A【分析】由在矩形紙片ABCD中,AB=4,AD=3,可求得BD的長,由折疊的性質,即可求得A′B的長,然后設AG=x,由勾股定理即可得:,解此方程即可求得答案.【詳解】解:∵四邊形ABCD是矩形,∴∴由折疊的性質,可得:A′D=AD=3,A′G=AG,∴A′B=BD?A′D=5?3=2,設AG=x,則A′G=x,BG=AB?AG=4?x,在Rt△A′BG中,由勾股定理得:∴解得:∴故選:A.考查折疊的性質,矩形的性質,勾股定理等知識點,熟練掌握折疊的性質是解題的關鍵.9、B【解析】結合給出的圖形以及在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,解答即可.【詳解】由圖象可知隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.1附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.1.故選B.考查利用頻率估計概率.大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.10、C【分析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應數(shù)值代入即可求解.【詳解】解:第一次降價后的價格為36×(1﹣x),兩次連續(xù)降價后售價在第一次降價后的價格的基礎上降低x,為36×(1﹣x)×(1﹣x),則列出的方程是36×(1﹣x)2=1.故選:C.考查由實際問題抽象出一元二次方程中求平均變化率的方法.若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數(shù)量關系為a(1±x)2=b.11、B【解析】試題分析:設有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:,故選B.考點:由實際問題抽象出一元二次方程.12、D【解析】A.種植10棵幼樹,結果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.二、填空題(每題4分,共24分)13、-1【解析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數(shù)圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數(shù)k的幾何意義.14、35°【分析】根據(jù)旋轉角度的概念可得∠ABE為旋轉角度,然后根據(jù)三角形外角的性質可進行求解.【詳解】解:由題意得:∠ABE為旋轉角度,∵∠A=20°,∠C=15°,E、B、C在同一直線上,∴∠ABE=∠A+∠C=35°;故答案為35°.本題主要考查旋轉及三角形外角的性質,熟練掌握旋轉的性質及三角形外角的性質是解題的關鍵.15、【分析】已知拋物線的頂點坐標,則可設頂點式,把(3,0)代入求出的值即可.【詳解】設二次函數(shù)的解析式為,∵拋物線與軸一個交點的橫坐標為,則這個點的坐標為:(3,0),∴將點(3,0)代入二次函數(shù)的解析式得,解得:,∴這個二次函數(shù)的解析式為:,故答案為:本題主要考查了用待定系數(shù)法求二次函數(shù)解析式,在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.16、(6,).【分析】過點D作DM⊥OB,垂足為M,先根據(jù)勾股定理求出菱形的邊長,即可得到點B、D的坐標,進而可根據(jù)菱形的性質求得點A的坐標,進一步即可求出反比例函數(shù)的解析式,再利用待定系數(shù)法求出直線BC的解析式,然后解由直線BC和反比例函數(shù)的解析式組成的方程組即可求出答案.【詳解】解:過點D作DM⊥OB,垂足為M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四邊形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的對角線交點,∴A(4,2),代入y=,得:k=8,∴反比例函數(shù)的關系式為:y=,設直線BC的關系式為y=kx+b,將B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直線BC的關系式為y=x﹣,將反比例函數(shù)與直線BC聯(lián)立方程組得:,解得:,(舍去),∴F(6,),故答案為:(6,).本題考查了菱形的性質、勾股定理、待定系數(shù)法求函數(shù)的解析式以及求兩個函數(shù)的交點等知識,屬于??碱}型,正確作出輔助線、熟練掌握上述知識是解題的關鍵.17、(-1,2)【分析】根據(jù)關于原點對稱的點的橫坐標與縱坐標都互為相反數(shù)解答.【詳解】解:∵點A(1,-2)與點A1(-1,2)關于原點對稱,∴A1(-1,2).故答案為:(-1,2).本題考查了關于原點對稱的點的坐標,熟記關于原點對稱的點的橫坐標與縱坐標都互為相反數(shù)是解題的關鍵.18、【分析】由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.本題考查了相似三角形的判定和性質,難度適中,需熟練掌握.三、解答題(共78分)19、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②點M的坐標為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【解析】(1)先根據(jù)已知求點A的坐標,利用待定系數(shù)法求二次函數(shù)的解析式;(2)①先得AB的解析式為:y=-2x+2,根據(jù)PD⊥x軸,設P(x,-x2-3x+4),則E(x,-2x+2),根據(jù)PE=DE,列方程可得P的坐標;②先設點M的坐標,根據(jù)兩點距離公式可得AB,AM,BM的長,分三種情況:△ABM為直角三角形時,分別以A、B、M為直角頂點時,利用勾股定理列方程可得點M的坐標.【詳解】(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴=2,∴=2,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線的解析式為:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式為:y=﹣2x+2,設P(x,﹣x2﹣3x+4),則E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直線PD上,且P(﹣1,6),設M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三種情況:i)當∠AMB=90°時,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)當∠ABM=90°時,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)當∠BAM=90°時,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);綜上所述,點M的坐標為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).此題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,鉛直高度和勾股定理的運用,直角三角形的判定等知識.此題難度適中,解題的關鍵是注意方程思想與分類討論思想的應用.20、(1)樹AB的高約為4m;(2)8m.【解析】(1)AB=ACtan30°=12×=(米).答:樹高約為米.(2)如圖(2),B1N=AN=AB1sin45°=×=(米).NC1=NB1tan60°=×=(米).AC1=AN+NC1=+.當樹與地面成60°角時影長最大AC2(或樹與光線垂直時影長最大或光線與半徑為AB的⊙A相切時影長最大)AC2=2AB2=;(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函數(shù)即可求得AB的長;(2)在△AB1C1中,已知AB1的長,即AB的長,∠B1AC1=45°,∠B1C1A=30°.過B1作AC1的垂線,在直角△AB1N中根據(jù)三角函數(shù)求得AN,BN;再在直角△B1NC1中,根據(jù)三角函數(shù)求得NC1的長,再根據(jù)當樹與地面成60°角時影長最大,根據(jù)三角函數(shù)即可求解.21、(1)y=x2﹣2x﹣3;(2)CP的長為3﹣或3﹣3;(3)a的值為1﹣或2+.【解析】(1)先根據(jù)題意得出點B的坐標,再利用待定系數(shù)法求解可得;

(2)分點P在點C上方和下方兩種情況,先求出∠OBP的度數(shù),再利用三角函數(shù)求出OP的長,從而得出答案;

(3)分對稱軸x=1在a到a+1范圍的右側、中間和左側三種情況,結合二次函數(shù)的性質求解可得.【詳解】(1)∵點A(﹣1,0)與點B關于直線x=1對稱,∴點B的坐標為(3,0),代入y=x2+bx+c,得:,解得,所以二次函數(shù)的表達式為y=x2﹣2x﹣3;(2)如圖所示:由拋物線解析式知C(0,﹣3),則OB=OC=3,∴∠OBC=45°,若點P在點C上方,則∠OBP=∠OBC﹣∠PBC=30°,∴OP=OBtan∠OBP=3×=,∴CP=3﹣;若點P在點C下方,則∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OBtan∠OBP′=3×=3,∴CP=3﹣3;綜上,CP的長為3﹣或3﹣3;(3)若a+1<1,即a<0,則函數(shù)的最小值為(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣(正值舍去);若a<1<a+1,即0<a<1,則函數(shù)的最小值為1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,則函數(shù)的最小值為a2﹣2a﹣3=2a,解得a=2+(負值舍去);綜上,a的值為1﹣或2+.本題是二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、三角函數(shù)的運用、二次函數(shù)的圖象與性質及分類討論思想的運用.22、(1)16;(2)2或;(3)【分析】(1)過C作CH⊥AB與H,在Rt△BCH中,求出CH、BH,再求出CD即可解決問題;

(2)分兩種情形①∠BCE=∠BAE=90°,由BE=BE,得△BEC≌△BEA;②∠BEC=∠BAE=90°,延長CE交BA延長線于T,得△BEC≌△BET;分別求解即可;

(3)根據(jù)DM∥AB,得,構建函數(shù)關系式即可;【詳解】解:(1)如圖,過作于,∵,,∴四邊形為矩形.在中,,,,∴,∴,則四邊形的面積.(2)∵平分,∴,當與相似時,①,∵,∴,∴,在中,,∴.②,延長交延長線于,∵,,,∴,∴,,∵,∴.令,則在中,,,,∴,解得.綜上,當與相似時,線段的長為2或.(3)延長交延長線于,∵,∴,∴.在中,.則,又∵,∴,即,解得.本題考查了全等三角形與相似三角形的判定和性質,三角函數(shù),勾股定理,以及二次函數(shù)的應用,正確作出輔助線構造相似三角形與全等三角形是解題的關鍵.23、【分析】根據(jù)特殊角的三角函數(shù)值與二次根式的運算法則即可求解.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論