版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆內(nèi)蒙古北京八中烏蘭察布分校數(shù)學(xué)高三上期末預(yù)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定點(diǎn)都在平面內(nèi),定點(diǎn)是內(nèi)異于的動(dòng)點(diǎn),且,那么動(dòng)點(diǎn)在平面內(nèi)的軌跡是()A.圓,但要去掉兩個(gè)點(diǎn) B.橢圓,但要去掉兩個(gè)點(diǎn)C.雙曲線,但要去掉兩個(gè)點(diǎn) D.拋物線,但要去掉兩個(gè)點(diǎn)2.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.13.已知,,,則()A. B. C. D.4.定義在上函數(shù)滿足,且對(duì)任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.5.相傳黃帝時(shí)代,在制定樂(lè)律時(shí),用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計(jì)算過(guò)程,若輸入的的值為1,輸出的的值為()A. B. C. D.6.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.7.某人用隨機(jī)模擬的方法估計(jì)無(wú)理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過(guò)點(diǎn)作軸的垂線與曲線相交于點(diǎn),過(guò)作軸的垂線與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線上方的有粒,則無(wú)理數(shù)的估計(jì)值是()A. B. C. D.8.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.9.已知,則()A. B. C. D.10.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.311.已知函數(shù),,若對(duì),且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知雙曲線:的左、右兩個(gè)焦點(diǎn)分別為,,若存在點(diǎn)滿足,則該雙曲線的離心率為()A.2 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.如果橢圓的對(duì)稱軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在x軸上,且=,那么橢圓的方程是.14.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_(kāi)____.15.如圖所示,邊長(zhǎng)為1的正三角形中,點(diǎn),分別在線段,上,將沿線段進(jìn)行翻折,得到右圖所示的圖形,翻折后的點(diǎn)在線段上,則線段的最小值為_(kāi)______.16.已知函數(shù),則過(guò)原點(diǎn)且與曲線相切的直線方程為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓E:()的離心率為,且短軸的一個(gè)端點(diǎn)B與兩焦點(diǎn)A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點(diǎn)P為橢圓E上的一點(diǎn),過(guò)點(diǎn)P作橢圓E的切線交圓O:于不同的兩點(diǎn)M,N(其中M在N的右側(cè)),求四邊形面積的最大值.19.(12分)已知,且滿足,證明:.20.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒(méi)有零點(diǎn);(2)在上恒成立,求的取值范圍.21.(12分)設(shè)數(shù)列是等差數(shù)列,其前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:.22.(10分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動(dòng)點(diǎn),所以的軌跡是圓,但要去掉兩個(gè)點(diǎn)A,B故選:A【點(diǎn)睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問(wèn)題,屬于中檔題.2、A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.3、B【解析】
利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性,將數(shù)據(jù)和做對(duì)比,即可判斷.【詳解】由于,,故.故選:B.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,屬基礎(chǔ)題.4、B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡(jiǎn)題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對(duì)應(yīng)于恒成立,即即對(duì)恒成立即對(duì)恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點(diǎn)睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.5、B【解析】
根據(jù)循環(huán)語(yǔ)句,輸入,執(zhí)行循環(huán)語(yǔ)句即可計(jì)算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【點(diǎn)睛】本題考查了循環(huán)語(yǔ)句的程序框圖,求輸出的結(jié)果,解答此類題目時(shí)結(jié)合循環(huán)的條件進(jìn)行計(jì)算,需要注意跳出循環(huán)的判定語(yǔ)句,本題較為基礎(chǔ).6、D【解析】
先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)?,?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡(jiǎn)得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問(wèn)題.7、D【解析】
利用定積分計(jì)算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時(shí)也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.8、A【解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項(xiàng).【詳解】由于等差數(shù)列中,所以,化簡(jiǎn)得,所以為.故選:A【點(diǎn)睛】本小題主要考查等差數(shù)列的基本量計(jì)算,屬于基礎(chǔ)題.9、C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).10、A【解析】
由復(fù)數(shù)除法求出,再由模的定義計(jì)算出模.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.11、D【解析】
先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個(gè)根求參數(shù)范圍即可.【詳解】因?yàn)?,故,?dāng)時(shí),,故在區(qū)間上單調(diào)遞減;當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增;當(dāng)時(shí),令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時(shí),趨近于正無(wú)窮;對(duì)函數(shù),當(dāng)時(shí),;根據(jù)題意,對(duì),且,使得成立,只需,即可得,解得.故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究由方程根的個(gè)數(shù)求參數(shù)范圍的問(wèn)題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問(wèn)題,屬綜合困難題.12、B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點(diǎn)睛】本題主要考查雙曲線的定義及離心率,離心率求解時(shí),一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可設(shè)橢圓方程為:∵短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在軸上∴又,∴,∴橢圓的方程為,故答案為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識(shí).14、x﹣y=0.【解析】
先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對(duì)函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線斜率,最后利用點(diǎn)斜式寫(xiě)出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
設(shè),,在中利用正弦定理得出關(guān)于的函數(shù),從而可得的最小值.【詳解】解:設(shè),,則,,∴,在中,由正弦定理可得,即,∴,∴當(dāng)即時(shí),取得最小值.故答案為.【點(diǎn)睛】本題考查正弦定理解三角形的應(yīng)用,屬中檔題.16、【解析】
設(shè)切點(diǎn)坐標(biāo)為,利用導(dǎo)數(shù)求出曲線在切點(diǎn)的切線方程,將原點(diǎn)代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點(diǎn)坐標(biāo)為,,,,則曲線在點(diǎn)處的切線方程為,由于該直線過(guò)原點(diǎn),則,得,因此,則過(guò)原點(diǎn)且與曲線相切的直線方程為,故答案為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查過(guò)點(diǎn)作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點(diǎn)坐標(biāo),并利用導(dǎo)數(shù)求出切線方程;(2)將所過(guò)點(diǎn)的坐標(biāo)代入切線方程,求出參數(shù)的值,可得出切點(diǎn)的坐標(biāo);(3)將參數(shù)的值代入切線方程,可得出切線的方程.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】
(1)對(duì)a分三種情況討論求出函數(shù)的單調(diào)性;(2)對(duì)a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時(shí),,∴成立.當(dāng)時(shí),,,∴.當(dāng)時(shí),,,∴,即.綜上.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)結(jié)合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設(shè)出直線方程,聯(lián)立直線方程與橢圓方程,利用判別式等于0可得,聯(lián)立直線方程與圓的方程,結(jié)合根與系數(shù)的關(guān)系求得,利用弦長(zhǎng)公式及點(diǎn)到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結(jié)合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設(shè):,由,得,由,得,∵,設(shè)點(diǎn)O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當(dāng)且僅當(dāng),即時(shí)取“”.∴四邊形面積的最大值為4.【點(diǎn)睛】本題考查了由求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于難題.19、證明見(jiàn)解析【解析】
將化簡(jiǎn)可得,由柯西不等式可得證明.【詳解】解:因?yàn)?,,所以,又,所以,?dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本題主要考查柯西不等式的應(yīng)用,相對(duì)不難,注意已知條件的化簡(jiǎn)及柯西不等式的靈活運(yùn)用.20、(1)證明見(jiàn)解析(2)【解析】
(1)先利用導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒(méi)有零點(diǎn);(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當(dāng)時(shí),,,這時(shí),又函數(shù)是奇函數(shù),所以當(dāng)時(shí),.綜上,當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒(méi)有零點(diǎn).(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時(shí),,又,所以當(dāng)時(shí),,滿足題意;當(dāng)時(shí),有,與條件矛盾,舍去;當(dāng)時(shí),令,則,又,故在區(qū)間上有無(wú)窮多個(gè)零點(diǎn),設(shè)最小的零點(diǎn)為,則當(dāng)時(shí),,因此在上單調(diào)遞增.,所以.于是,當(dāng)時(shí),,得,與條件矛盾.故的取值范圍是.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的四則運(yùn)算法則和導(dǎo)數(shù)公式的應(yīng)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論思想和放縮法的應(yīng)用,難度較大,意在考查學(xué)生的數(shù)學(xué)建模能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.21、(1)(2)見(jiàn)解析【解析】
(1)設(shè)數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設(shè)數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式的計(jì)算,放縮法證明數(shù)列不等式,屬于中檔題.22、(1)見(jiàn)解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進(jìn)而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長(zhǎng)度,建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),并求得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年英語(yǔ)專業(yè)八級(jí)考試聽(tīng)力模擬題
- 消防安全經(jīng)理人培訓(xùn)課件
- 2026年二級(jí)注冊(cè)結(jié)構(gòu)工程師考試預(yù)測(cè)模擬題
- 2025年企業(yè)環(huán)保設(shè)施運(yùn)行與污染治理手冊(cè)
- 設(shè)備技術(shù)文件知識(shí)培訓(xùn)
- 勞資培訓(xùn)講解課件
- 酒店業(yè)客房管理與服務(wù)手冊(cè)
- 設(shè)備技師培訓(xùn)
- 勞動(dòng)課培訓(xùn)課件教學(xué)
- 設(shè)備巡檢安全培訓(xùn)課件
- 腫瘤壞死因子受體相關(guān)周期性綜合征診療指南
- 中醫(yī)協(xié)定處方管理制度
- 高一數(shù)學(xué)第一學(xué)期必修一、四全冊(cè)導(dǎo)學(xué)案
- 2025年開(kāi)封大學(xué)單招職業(yè)技能測(cè)試題庫(kù)完整
- 亞馬遜運(yùn)營(yíng)廣告培訓(xùn)
- 中建給排水施工方案EPC項(xiàng)目
- 電氣工程及自動(dòng)化基于PLC的皮帶集中控制系統(tǒng)設(shè)計(jì)
- 醫(yī)學(xué)教材 常見(jiàn)輸液反應(yīng)的處理(急性肺水腫)
- FURUNO 電子海圖 完整題庫(kù)
- 企業(yè)年會(huì)攝影拍攝合同協(xié)議范本
- 焊接質(zhì)量控制規(guī)范培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論