版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省名校協(xié)作體2026屆數(shù)學高三第一學期期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.2.已知復數(shù)滿足,則的共軛復數(shù)是()A. B. C. D.3.某人用隨機模擬的方法估計無理數(shù)的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計出這些豆子在曲線上方的有粒,則無理數(shù)的估計值是()A. B. C. D.4.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)5.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④6.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學期望,則的取值范圍為()A. B. C. D.7.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.89.設(shè)復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知為虛數(shù)單位,復數(shù),則其共軛復數(shù)()A. B. C. D.11.已知實數(shù),則下列說法正確的是()A. B.C. D.12.的展開式中,含項的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則_____________.14.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.在中,,,,則__________.16.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結(jié)束后對學生進行了考核.記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學生的考核成績在區(qū)間的概率,根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學生冰雪培訓活動是否有效,并說明理由.18.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.19.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.20.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.21.(12分)已知函數(shù)的最小正周期是,且當時,取得最大值.(1)求的解析式;(2)作出在上的圖象(要列表).22.(10分)在直角坐標系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.(1)求圓C的極坐標方程;(2)直線l的極坐標方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應用。2、B【解析】
根據(jù)復數(shù)的除法運算法則和共軛復數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數(shù)的除法的運算法則,考查了復數(shù)的共軛復數(shù)的定義,屬于基礎(chǔ)題.3、D【解析】
利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達式即可.【詳解】在函數(shù)的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.4、C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項.【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.5、D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.6、A【解析】
根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功7、B【解析】
構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設(shè),則函數(shù)的導數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學生分析問題解決問題的能力,是難題.8、A【解析】
由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.9、D【解析】
先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內(nèi)對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.10、B【解析】
先根據(jù)復數(shù)的乘法計算出,然后再根據(jù)共軛復數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復數(shù).故選:B.【點睛】本題考查復數(shù)的乘法運算以及共軛復數(shù)的概念,難度較易.11、C【解析】
利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【點睛】利用不等式性質(zhì)比較大?。⒁獠坏仁叫再|(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.12、B【解析】
在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎(chǔ)題.14、【解析】
將代入求解即可;當為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導函數(shù)求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.15、1【解析】
由已知利用余弦定理可得,即可解得的值.【詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.【點睛】本題主要考查余弦定理在解三角形中的應用,屬于基礎(chǔ)題.16、5【解析】
△PMF的周長最小,即求最小,過做拋物線準線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準線方程為y=﹣2.過作準線的垂線,垂足為,則有,當且僅當三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應用,考查數(shù)形結(jié)合與數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】
(Ⅰ)根據(jù)莖葉圖求出滿足條件的概率即可;(Ⅱ)結(jié)合圖表得到6人中有2個人考核為優(yōu),從而求出滿足條件的概率即可;(Ⅲ)求出滿足的成績有16個,求出滿足條件的概率即可.【詳解】解:(Ⅰ)設(shè)這名學生考核優(yōu)秀為事件,由莖葉圖中的數(shù)據(jù)可以知道,30名同學中,有7名同學考核優(yōu)秀,所以所求概率約為(Ⅱ)設(shè)從圖中考核成績滿足的學生中任取2人,至少有一人考核成績優(yōu)秀為事件,因為表中成績在的6人中有2個人考核為優(yōu),所以基本事件空間包含15個基本事件,事件包含9個基本事件,所以(Ⅲ)根據(jù)表格中的數(shù)據(jù),滿足的成績有16個,所以所以可以認為此次冰雪培訓活動有效.【點睛】本題考查了莖葉圖問題,考查概率求值以及轉(zhuǎn)化思想,是一道常規(guī)題.18、(1)證明見解析(2)【解析】
(1)因為正方形ABCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因為平面ABMN,平面ABMN,所以,,因為,所以,因為,所以,所以,因為在直角梯形ABMN中,,所以,所以,所以,因為,所以平面.(2)如圖,取BM的中點E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因為平面CDM,平面CDM,所以NE∥平面CDM,所以點N到平面CDM的距離與點E到平面CDM的距離相等,設(shè)點N到平面CDM的距離為h,由可得點B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以,又,所以由可得,解得,所以點N到平面CDM的距離為.19、(1)(2)【解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點評:中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達定理.存在性問題,往往從假設(shè)存在出發(fā),運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應用平面向量知識證明了圓的存在性.20、(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設(shè),,當時,,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設(shè),,當時,,,令,解得,當時,,函數(shù)在上單調(diào)遞減;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025天津師范大學后勤管理處膳食服務中心勞務派遣工作人員招聘備考題庫(含答案詳解)
- 2026江蘇蘇州市吳江區(qū)教育系統(tǒng)招聘事業(yè)編制教師36人備考題庫及一套參考答案詳解
- 2026河南安陽市直機關(guān)遴選公務員3人備考題庫(安陽市檢察院遴選3名)及1套參考答案詳解
- 2026年甘肅省臨夏七醫(yī)院社會招聘63人備考題庫及一套完整答案詳解
- 2026四川成都市雙流區(qū)東升葛陌幼兒園教師招聘1人備考題庫及答案詳解(新)
- 2025中國電信濱海分公司招聘2人備考題庫及答案詳解(新)
- 2025四川雅安石棉縣佳業(yè)勞務派遣有限公司招聘石棉縣應急救援指揮中心輔助人員1人備考題庫及完整答案詳解1套
- 2026南水北調(diào)東線山東干線有限責任公司人才招聘8人備考題庫及一套答案詳解
- 2026廣西南寧市第十三中學資產(chǎn)管理員招聘1人備考題庫及答案詳解(新)
- 2026內(nèi)蒙古鄂爾多斯市東勝區(qū)實驗小學招聘教師備考題庫附答案詳解
- 《型材知識介紹》課件
- 幼兒園小班美術(shù)《雪花飄飄》課件
- 期末測試卷-2024-2025學年外研版(一起)英語六年級上冊(含答案含聽力原文無音頻)
- 橋架彎制作方法及流程
- DB13(J)-T 298-2019 斜向條形槽保溫復合板應用技術(shù)規(guī)程(2024年版)
- 茜草素的藥代動力學和藥效學研究
- (正式版)SHT 3229-2024 石油化工鋼制空冷式熱交換器技術(shù)規(guī)范
- 健康政策與經(jīng)濟學
- 2噸每小時雙級反滲透設(shè)備工藝流程介紹資料
- GB/T 42506-2023國有企業(yè)采購信用信息公示規(guī)范
- 工程施工水廠及管網(wǎng)
評論
0/150
提交評論