版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆山東省高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若a>b,c>d,則下列不等式中一定正確的是()A. B.C. D.2.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象可能是()A. B.C. D.3.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.4.函數(shù)在點(diǎn)處的切線方程的斜率是()A. B.C. D.5.若展開式的二項式系數(shù)之和為,則展開式的常數(shù)項為()A. B.C. D.6.若數(shù)列對任意滿足,下面選項中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列7.設(shè)、分別為具有公共焦點(diǎn)與的橢圓和雙曲線的離心率,為兩曲線的一個公共點(diǎn),且滿足,則的值為()A. B.C. D.8.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.9.氣象臺正南方向的一臺風(fēng)中心,正向北偏東30°方向移動,移動速度為,距臺風(fēng)中心以內(nèi)的地區(qū)都將受到影響,若臺風(fēng)中心的這種移動趨勢不變,氣象臺所在地受到臺風(fēng)影響持續(xù)時間大約是()A. B.C. D.10.我國古代數(shù)學(xué)論著中有如下敘述:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結(jié)論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍11.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列結(jié)論正確的是().A.函數(shù)在上是增函數(shù)B.C.D.是函數(shù)的極小值點(diǎn)12.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點(diǎn),若C為直線與y軸的交點(diǎn),且,則k等于()A.4 B.6C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知A,B為x,y正半軸上的動點(diǎn),且,O為坐標(biāo)原點(diǎn),現(xiàn)以為邊長在第一象限做正方形,則的最大值為___________.14.某廠將從64名員工中用系統(tǒng)抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號為1~64,若已知8號、24號、56號在樣本中,那么樣本中最后一個員工的號碼是__________15.已知橢圓和雙曲線有相同的焦點(diǎn)和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點(diǎn),且(為坐標(biāo)原點(diǎn)).若,則的取值范圍是______16.設(shè)P為圓上一動點(diǎn),Q為直線上一動點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若存在實(shí)常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實(shí)數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.18.(12分)在數(shù)列中,,,(1)設(shè),證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項和.19.(12分)已知拋物線C:(1)若拋物線C上一點(diǎn)P到F的距離是4,求P的坐標(biāo);(2)若不過原點(diǎn)O的直線l與拋物線C交于A、B兩點(diǎn),且,求證:直線l過定點(diǎn)20.(12分)某快遞公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)在這60天中包裹件數(shù)在和的兩組中,用分層抽樣的方法抽取30件,求在這兩組中應(yīng)分別抽取多少件?21.(12分)已知數(shù)列是等差數(shù)列,其前n項和為,,,數(shù)列滿足(且),.(1)求和的通項公式;(2)求數(shù)列的前n項和.22.(10分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2026屆中國的汽車總銷量將達(dá)到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺16200元,第一年每臺設(shè)備的維修保養(yǎng)費(fèi)用為1100元,以后每年增加400元,每臺充電樁每年可給公司收益8100元(1)每臺充電樁第幾年開始獲利?(2)每臺充電樁在第幾年時,年平均利潤最大
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)不等式的性質(zhì)及反例判斷各個選項.【詳解】因為c>d,所以,所以,所以B正確;時,不滿足選項A;時,,且,所以不滿足選項CD;故選:B2、A【解析】根據(jù)原函數(shù)圖象判斷出函數(shù)單調(diào)性,由此判斷導(dǎo)函數(shù)的圖象.【詳解】原函數(shù)在上從左向右有增、減、增,個單調(diào)區(qū)間;在上遞減.所以導(dǎo)函數(shù)在上從左向右應(yīng)為:正、負(fù)、正;在上應(yīng)為負(fù).所以A選項符合.故選:A3、B【解析】根據(jù)球的性質(zhì)可求出截面圓的半徑即可求解.【詳解】由球的性質(zhì)可知,截面圓的半徑為,所以截面的面積.故選:B4、D【解析】求解導(dǎo)函數(shù),再由導(dǎo)數(shù)的幾何意義得切線的斜率.【詳解】求導(dǎo)得,由導(dǎo)數(shù)的幾何意義得,所以函數(shù)在處切線的斜率為.故選:D5、C【解析】利用二項式系數(shù)的性質(zhì)求得的值,再利用二項式展開式的通項公式,求得結(jié)果即可.【詳解】解:因為展開式的二項式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項為.故選:C.6、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯誤;若,當(dāng)時,數(shù)列是等差數(shù)列,當(dāng)時,數(shù)列是等比數(shù)列,則A錯誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D7、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因為,則,由勾股定理得,即,整理得,故.故選:A.8、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關(guān)系,從而點(diǎn)在以原點(diǎn)為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結(jié)論【詳解】圓標(biāo)準(zhǔn)方程為,,半徑為,圓標(biāo)準(zhǔn)方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點(diǎn)在以原點(diǎn)為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B9、D【解析】利用余弦定理進(jìn)行求解即可.【詳解】如圖所示:設(shè)臺風(fēng)中心為,,小時后到達(dá)點(diǎn)處,即,當(dāng)時,氣象臺所在地受到臺風(fēng)影響,由余弦定理可知:,于是有:,解得:,所以氣象臺所在地受到臺風(fēng)影響持續(xù)時間大約是,故選:D10、C【解析】由題設(shè)易知是公比為2的等比數(shù)列,應(yīng)用等比數(shù)列前n項和公式求,結(jié)合各選項的描述及等比數(shù)列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.11、B【解析】根據(jù)導(dǎo)函數(shù)的圖像,可求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值點(diǎn)的定義逐一判斷各個選項即可得出答案.【詳解】解:根據(jù)函數(shù)的導(dǎo)函數(shù)的圖象,可得或時,,當(dāng)或時,,所以函數(shù)在和上遞減,在和上遞增,故A錯誤;,故B正確;,故C錯誤;是函數(shù)的極大值點(diǎn),故D錯誤.故選:B.12、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點(diǎn)的橫坐標(biāo),再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當(dāng)時,與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、32【解析】建立平面直角坐標(biāo)系,設(shè)出角度和邊長,表達(dá)出點(diǎn)坐標(biāo),進(jìn)而表達(dá)出,利用三角函數(shù)換元,求出最大值.【詳解】如圖,過點(diǎn)D作DE⊥x軸于點(diǎn)E,過點(diǎn)C作CF⊥y軸于點(diǎn)F,設(shè),(),則由三角形全等可知,設(shè),,則,則,,則,令,,則,當(dāng)時,取得最大值,最大值為32故答案為:3214、40【解析】結(jié)合系統(tǒng)抽樣的抽樣方法來確定最后抽取的號碼.【詳解】因為分段間隔為,故最后一個員工的號碼為.故答案為:15、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實(shí)半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點(diǎn)和在x軸上,點(diǎn)P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點(diǎn),因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點(diǎn)睛】方法點(diǎn)睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.16、4【解析】取點(diǎn),可得,從而,,從而可求解【詳解】解:由圓,得圓心,半徑,取點(diǎn)A(3,0),則,又,∴,∴,∴,當(dāng)且僅當(dāng)直線時取等號故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)由導(dǎo)數(shù)得出在上的單調(diào)性;(2)設(shè)和之間的隔離直線為y=kx+b,由題設(shè)條件得出對任意恒成立,再由二次函數(shù)的性質(zhì)求解即可.【小問1詳解】,當(dāng)時,在上單調(diào)遞增在內(nèi)單調(diào)遞增【小問2詳解】設(shè)和之間的隔離直線為y=kx+b則對任意恒成立,即對任意恒成立由對任意恒成立,得當(dāng)時,則有符合題意;當(dāng)時,則有對任意恒成立的對稱軸為又的對稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在解決問題一時,求了一階導(dǎo)得不了函數(shù)的單調(diào)性,再次求導(dǎo)得,進(jìn)而得出在恒成立,得在上的單調(diào)性.18、(1)略(2)【解析】(1)題中條件,而要證明的是數(shù)列是等差數(shù)列,因此需將條件中所給的的遞推公式轉(zhuǎn)化為的遞推公式:,從而,,進(jìn)而得證;(2)由(1)可得,,因此數(shù)列的通項公式可以看成一個等差數(shù)列與等比數(shù)列的乘積,故可考慮采用錯位相減法求其前項和,即有:①,①得:②,②-①得.試題解析:(1)∵,,又∵,∴,,∴則是為首項為公差的等差數(shù)列;由(1)得,∴,∴①,①得:②,②-①得.考點(diǎn):1.數(shù)列的通項公式;2.錯位相減法求數(shù)列的和.19、(1)(2)見解析【解析】(1)由拋物線的定義,可得點(diǎn)的坐標(biāo);(2)可設(shè)直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達(dá)定理求得,,再根據(jù),可得,從而可求得參數(shù)的關(guān)系,即可得出結(jié)論.【小問1詳解】解:設(shè),,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標(biāo)為;【小問2詳解】證明:由題意知直線不能與軸平行,可設(shè)直線的方程為,與拋物線聯(lián)立得,消去得,設(shè),,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當(dāng)時,,所以直線過定點(diǎn)20、(1)平均數(shù)和中位數(shù)都為260件;(2)在的件數(shù)為,在的件數(shù)為.【解析】(1)由每組頻率乘以組中值相加即可得平均數(shù),設(shè)中位數(shù)為,由落在區(qū)間內(nèi)的頻率為0.5可得結(jié)果;(2)先得頻率分別為0.1,0.5,由分層抽樣的概念即可得結(jié)果.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;設(shè)中位數(shù)為,易知,則,解得.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)件數(shù)在,的頻率分別為0.1,0.5頻率之比為1:5,所抽取的30件中,在的件數(shù)為,在的件數(shù)為.21、(1),;(2).【解析】(1)根據(jù),列方程組即可求解數(shù)列的通項公式,根據(jù)可求數(shù)列的通項公式;(2)化簡,利用裂項相消法求該數(shù)列前n項和.【小問1詳解】設(shè)等差數(shù)列公差為d,∵,∴,∵公差,∴.由得,即,∴數(shù)列是首項為,公比為2的等比數(shù)列,∴;【小問2詳解】∵,∴,.22、(1)公司從第3年開始獲利;(2)第9年時每臺充電樁年平均利潤最大3600元【解析】(1)判斷已知條件是等差數(shù)列,然后求解利潤的表達(dá)式,推出表達(dá)式求解n即可(2)利用基本不等式求解最大值即可【詳解】(1)每年的維修保養(yǎng)費(fèi)用是以1100為首項,400為公差的等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 獸醫(yī)護(hù)理學(xué)基礎(chǔ)知識題庫及答案
- 國有企業(yè)管理崗競聘筆試題及答案
- 醫(yī)院VTE防治培訓(xùn)考核試題及答案
- 砌筑工考試真題及答案
- 網(wǎng)貸題庫及答案
- 新地史考試題庫及答案
- 醫(yī)療感染防控知識試題庫附答案
- 醫(yī)院心血管內(nèi)科護(hù)士面試題及參考答案結(jié)構(gòu)化面試題
- 藥事管理及法規(guī)模擬試題附答案
- 房地產(chǎn)基本制度與政策《證券知識試題》考試題含答案
- 汪金敏 培訓(xùn)課件
- 物流公司托板管理制度
- 先進(jìn)復(fù)合材料與航空航天
- 醫(yī)療護(hù)理操作評分細(xì)則
- 自考-經(jīng)濟(jì)思想史知識點(diǎn)大全
- 銀行資金閉環(huán)管理制度
- 2024年山東省胸痛中心質(zhì)控報告
- 中外航海文化知到課后答案智慧樹章節(jié)測試答案2025年春中國人民解放軍海軍大連艦艇學(xué)院
- dlt-5161-2018電氣裝置安裝工程質(zhì)量檢驗及評定規(guī)程
- 芳香療法行業(yè)消費(fèi)市場分析
- 學(xué)習(xí)無人機(jī)航拍心得體會1000字
評論
0/150
提交評論