廣東省深圳實驗學(xué)校2026屆高二上數(shù)學(xué)期末達標(biāo)檢測模擬試題含解析_第1頁
廣東省深圳實驗學(xué)校2026屆高二上數(shù)學(xué)期末達標(biāo)檢測模擬試題含解析_第2頁
廣東省深圳實驗學(xué)校2026屆高二上數(shù)學(xué)期末達標(biāo)檢測模擬試題含解析_第3頁
廣東省深圳實驗學(xué)校2026屆高二上數(shù)學(xué)期末達標(biāo)檢測模擬試題含解析_第4頁
廣東省深圳實驗學(xué)校2026屆高二上數(shù)學(xué)期末達標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省深圳實驗學(xué)校2026屆高二上數(shù)學(xué)期末達標(biāo)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線與曲線的()A.實軸長相等 B.虛軸長相等C.焦距相等 D.漸進線相同2.橢圓的短軸長為()A.8 B.2C.4 D.3.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.34.已知函數(shù),則的值為()A. B.C. D.5.在數(shù)列中,,,,則()A.2 B.C. D.16.等比數(shù)列的第4項與第6項分別為12和48,則公比的值為()A. B.2C.或2 D.或7.拋物線的焦點是A. B.C. D.8.雙曲線的漸近線方程為()A. B.C. D.9.已知函數(shù)在區(qū)間有且僅有2個極值點,則m的取值范圍是()A. B.C. D.10.過雙曲線的右焦點F作一條漸近線的垂線,垂足為M,且FM的中點A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.11.已知函數(shù)的導(dǎo)數(shù)為,且滿足,則()A. B.C. D.12.已知某班有學(xué)生48人,為了解該班學(xué)生視力情況,現(xiàn)將所有學(xué)生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學(xué)生在樣本中,則樣本中另外一個學(xué)生的編號是()A.26 B.27C.28 D.29二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線上一點P到的距離最小值為___________.14.如圖,PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點,cos〈,〉=,若以DA,DC,DP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,則點E的坐標(biāo)為________15.若數(shù)列滿足,,則__________16.已知雙曲線的左、右焦點分別為,,O為坐標(biāo)原點,點M是雙曲線左支上的一點,若,,則雙曲線的離心率是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線,拋物線的焦點與雙曲線的一個焦點相同,點為拋物線上一點.(1)求雙曲線的焦點坐標(biāo);(2)若點到拋物線的焦點的距離是5,求的值.18.(12分)設(shè)橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.19.(12分)如圖,在三棱柱中,,D為BC的中點,平面平面ABC(1)證明:;(2)已知四邊形是邊長為2的菱形,且,問在線段上是否存在點E,使得平面EAD與平面EAC的夾角的余弦值為,若存在,求出CE的長度,若不存在,請說明理由20.(12分)已知直線,,,其中與的交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程21.(12分)如圖,在多面體中,和均為等邊三角形,D是的中點,.(1)證明:;(2)若,求多面體的體積.22.(10分)在平面直角坐標(biāo)系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準(zhǔn)線”,已知橢圓C的“類準(zhǔn)線”方程為,長軸長為8.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點,A為橢圓C的右頂點,直線l交橢圓C于E,F(xiàn)兩不同點(點E,F(xiàn)與點A不重合),且滿足,若點P滿足,求直線的斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】將曲線化為標(biāo)準(zhǔn)方程后即可求解.【詳解】化為標(biāo)準(zhǔn)方程為,由于,則兩曲線實軸長、虛軸長、焦距均不相等,而漸近線方程同為.故選:2、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.3、D【解析】求出拋物線C的準(zhǔn)線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準(zhǔn)線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D4、C【解析】利用導(dǎo)數(shù)公式及運算法則求得,再求解【詳解】因為,所以,所以故選:C5、A【解析】根據(jù)題中條件,逐項計算,即可得出結(jié)果.【詳解】因為,,,所以,因此.故選:A.6、C【解析】根據(jù)等比數(shù)列的通項公式計算可得;詳解】解:依題意、,所以,即,所以;故選:C7、D【解析】先判斷焦點的位置,再從標(biāo)準(zhǔn)型中找出即得焦點坐標(biāo).【詳解】焦點在軸上,又,故焦點坐標(biāo)為,故選D.【點睛】求圓錐曲線的焦點坐標(biāo),首先要把圓錐曲線的方程整理為標(biāo)準(zhǔn)方程,從而得到焦點的位置和焦點的坐標(biāo).8、A【解析】直接求出,,進而求出漸近線方程.【詳解】中,,,所以漸近線方程為,故.故選:A9、A【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合余弦型函數(shù)的性質(zhì)、極值的定義進行求解即可.【詳解】由,,因為在區(qū)間有且僅有2個極值點,所以令,解得,因此有,故選:A10、A【解析】根據(jù)題意可表示出漸近線方程,進而可知的斜率,表示出直線方程,求出的坐標(biāo)進而求得A點坐標(biāo),代入雙曲線方程整理求得和的關(guān)系式,進而求得離心率【詳解】:由題意設(shè)相應(yīng)的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點,把中點坐標(biāo)代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:11、C【解析】首先求出,再令即可求解.【詳解】由,則,令,則,所以.故選:C【點睛】本題主要考查了基本初等函數(shù)的導(dǎo)數(shù)以及導(dǎo)數(shù)的基本運算法則,屬于基礎(chǔ)題.12、B【解析】由系統(tǒng)抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學(xué)生來自第三組,設(shè)其編號為,則,進而求解即可【詳解】由系統(tǒng)抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學(xué)生來自第三組,設(shè)其編號為,則,所以,故選:B【點睛】本題考查系統(tǒng)抽樣的編號,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】設(shè)出點P的坐標(biāo),利用兩點間距離公式結(jié)合二次函數(shù)求出最小值即可作答.【詳解】設(shè),則,即,于是得,而,則當(dāng)時,,所以雙曲線上一點P到的距離最小值為2.故答案為:214、(1,1,1)【解析】設(shè)PD=a,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐標(biāo)為(1,1,1)15、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:716、5【解析】根據(jù)得出,設(shè),從而利用雙曲線的定義可求出,的關(guān)系,從而可求出答案.【詳解】設(shè)雙曲線的焦距為,則,因為,所以,因為,不妨設(shè),,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點坐標(biāo);(2)先求出的值,再解方程得解.【詳解】(1)因為雙曲線的方程為,所以.所以.所以.所以雙曲線的焦點坐標(biāo)分別為.(2)因為拋物線的焦點與雙曲線的一個焦點相同,所以拋物線的焦點坐標(biāo)是(2,0),所以.因為點為拋物線上一點,所以點到拋物線的焦點的距離等于點到拋物線的準(zhǔn)線的距離.因為點到拋物線的焦點的距離是5,即,所以.【點睛】本題主要考查雙曲線的焦點坐標(biāo)的求法,考查拋物線的定義和幾何性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.18、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標(biāo)準(zhǔn)方程;(2)本小題先設(shè)過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點到左右兩個焦點、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè)點、的坐標(biāo)為,,因為直線過點,所以可設(shè)直線方程為,聯(lián)立方程,消去可得:,化簡整理得,其中,所以,,因為,所以四邊形是平行四邊形,設(shè)平面四邊形的面積為,則,設(shè),則(),所以,因為,所以,,所以四邊形面積的最大值為6.【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程,相交弦等問題,是偏難題.19、(1)證明見解析(2)存在,1【解析】(1)由面面垂直證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標(biāo)系,利用空間向量進行求解.【小問1詳解】∵,且D為BC的中點,∴,因為平面平面ABC,交線為BC,AD⊥BC,AD面ABC,所以AD⊥面,因為面,所以.【小問2詳解】假設(shè)存在點E,滿足題設(shè)要求連接,,∵四邊形為邊長為2的菱形,且,∴為等邊三角形,∵D為BC的中點∴,∵平面平面ABC,交線為BC,面,所以面ABC,故以D為原點,DC,DA,分別為x,y,z軸的空間直角坐標(biāo)系則,,,,設(shè),,設(shè)面AED的一個法向量為,則,令,則設(shè)面AEC的一個法向量為,則,令,則設(shè)平面EAD與平面EAC的夾角為,則解得:,故點E為中點,所以20、(1);(2).【解析】(1)首先求、的交點坐標(biāo),根據(jù)的斜率,應(yīng)用點斜式寫出過P且與平行的直線方程;(2)根據(jù)弦心距、弦長、半徑的關(guān)系求圓的半徑,結(jié)合P的坐標(biāo)寫出圓的方程.【小問1詳解】聯(lián)立、得:,可得,故,又的斜率為,則過P且與平行的直線方程,∴所求直線方程為.【小問2詳解】由(1),P到的距離,∴以P為圓心,截所得弦長為8的圓的半徑,∴所求圓的方程為.21、(1)見詳解(1).(2)16【解析】(1)證線面垂直從而證線線垂直.(2)把面體看成兩個錐體,由已知線面垂直得高,并進一步可求錐體底面邊長,從而得解.【小問1詳解】因為,所以共面,連接、,因為和均為等邊三角形,D是的中點,所以,,,所以面平,平面,【小問2詳解】因為,,四邊形是平行四邊形,和均為等邊三角形,D是的中點,所以,,平行四邊形是正方形形,,.22、(1);(2).【解析】(1)由題意列關(guān)于,,的方程,聯(lián)立方程組求得,,,則橢圓方程可求;(2)分直線軸與直線l不垂直于x軸兩種情況討論,當(dāng)直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立直線方程與橢圓方程,消元由,得到,再列出韋達定理,由則,解得,再由,求出的坐標(biāo),則,再利用基本不等式求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論