版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆浙江省金華市云富高級中學(xué)數(shù)學(xué)高二上期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列滿足,則等于()A. B.C. D.2.已知,若,則()A. B.2C. D.e3.某地政府為落實疫情防控常態(tài)化,不定時從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進(jìn)行編號,若054號被抽中,則下列編號也被抽中的是()A.076 B.104C.390 D.5224.在中,角A,B,C所對的邊分別為a,b,c,,則的形狀為()A.正三角形 B.等腰直角三角形C.直角三角形 D.等腰三角形5.某學(xué)生2021年共參加10次數(shù)學(xué)競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標(biāo)準(zhǔn)差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);6.已知圓上有三個點到直線的距離等于1,則的值為()A. B.C. D.17.曲線在點處的切線過點,則實數(shù)()A. B.0C.1 D.28.設(shè)橢圓:的右頂點為,右焦點為,為橢圓在第二象限內(nèi)的點,直線交橢圓于點,為原點,若直線平分線段,則橢圓的離心率為A. B.C. D.9.已知雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C. D.10.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時,f(p)最大,則p0=()A. B.C. D.11.在數(shù)列中抽取部分項(按原來的順序)構(gòu)成一個新數(shù)列,記為,再在數(shù)列插入適當(dāng)?shù)捻?,使它們一起能?gòu)成一個首項為1,公比為3的等比數(shù)列.若,則數(shù)列中第項前(不含)插入的項的和最小為()A.30 B.91C.273 D.82012.已知向量,且與互相垂直,則k=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為三角形的一個內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)14.甲、乙兩名學(xué)生通過某次聽力測試的概率分別為和,且是否通過聽力測試相互獨立,兩人同時參加測試,其中有且只有一人能通過的概率是__________15.已知正四面體ABCD中,E,F(xiàn)分別是線段BC,AD的中點,點G是線段CD上靠近D的四等分點,則直線EF與AG所成角的余弦值為______16.過點作圓的切線,則切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)a=1時,對于任意的,,都有恒成立,則m的取值范圍.18.(12分)已知點A(0,-2),橢圓E:(a>b>0)的離心率為,F(xiàn)是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.(1)求E的方程;(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.19.(12分)已知圓的半徑為,圓心在直線上,點在圓上.(1)求圓的標(biāo)準(zhǔn)方程;(2)若原點在圓內(nèi),求過點且與圓相切的直線方程.20.(12分)某學(xué)校高一、高二、高三的三個年級學(xué)生人數(shù)如下表,按年級分層抽樣的方法評選優(yōu)秀學(xué)生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學(xué)生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;(3)用隨機(jī)抽樣的方法從高二女生中抽取8人,經(jīng)檢測她們的得分如圖所示,把這8人的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過5分的概率.21.(12分)已知.(1)求在上的單調(diào)遞增區(qū)間;(2)已知銳角內(nèi)角,,的對邊長分別是,,,若,.求面積的最大值.22.(10分)如圖,在四棱錐P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD為正方形,M、N、Q分別為AD、PD、BC的中點(1)證明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用等差中項求出的值,進(jìn)而可求得的值.【詳解】因為得,因此,.故選:A.2、B【解析】求得導(dǎo)函數(shù),則,計算即可得出結(jié)果.【詳解】,.,解得:.故選:B3、D【解析】根據(jù)題意,求得組數(shù)與抽中編號的對應(yīng)關(guān)系,即可判斷和選擇.【詳解】從780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測,故需要分為組,每組人,設(shè)第組抽中的編號為,設(shè),由題可知:,故可得,故可得.當(dāng)時,.故選:.4、C【解析】根據(jù)三角恒等變換結(jié)合正弦定理化簡求得,即可判定三角形形狀.【詳解】解:由題,得,即,由正弦定理可得:,所以,所以三角形中,所以,又,所以,即三角形為直角三角形.故選:C.5、B【解析】根據(jù)平均數(shù)、標(biāo)準(zhǔn)差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢,標(biāo)準(zhǔn)差描述數(shù)據(jù)的波動大小估計數(shù)據(jù)的穩(wěn)定程度.故選:B.6、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.7、A【解析】由導(dǎo)數(shù)的幾何意義得切線方程為,進(jìn)而得.【詳解】解:因為,,,所以,切線方程為,因為切線過點,所以,解得故選:A8、B【解析】如上圖,設(shè)AC中點為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點睛:本題主要考查橢圓的方程和性質(zhì),主要是離心率的求法,本題的關(guān)鍵是利用中位線定理和相似三角形定理9、B【解析】由雙曲線的漸近線方程以及即可求得離心率.【詳解】由已知條件得,∴,∴,∴,∴,故選:.10、A【解析】解設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當(dāng)且僅當(dāng),即時,等號成立,即,故選:A11、C【解析】先根據(jù)等比數(shù)列的通項公式得到,列出數(shù)列的前6項,將其中是數(shù)列的項的所有數(shù)去掉即可求解.【詳解】因為是以1為首項、3為公比的等比數(shù)列,所以,則由,得,即數(shù)列中前6項分別為:1、3、9、27、81、243,其中1、9、81是數(shù)列的項,3、27、243不是數(shù)列的項,且,所以數(shù)列中第7項前(不含)插入的項的和最小為.故選:C.12、C【解析】利用垂直的坐標(biāo)表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、焦點在軸上的橢圓,焦點在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進(jìn)而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點在x軸上的雙曲線.故答案為:焦點在y軸上橢圓,焦點在x軸上的雙曲線,兩條直線.14、##0.5【解析】分兩種情況,結(jié)合相互獨立事件公式即可求解.【詳解】記甲,乙通過聽力測試的分別為事件,則可得,兩人有且僅有一人通過為事件,故所求事件概率為.故答案為:15、【解析】建立空間直角坐標(biāo)系,令正四面體的棱長為,即可求出點的坐標(biāo),從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標(biāo)系,令正四面體的棱長為,則,所以,所以,所以,,,,,設(shè),因為,所以,所以,所以,,設(shè)直線與所成角為,則故答案為:16、【解析】求出切點與圓心連線的斜率后可得切線方程.【詳解】因為點在圓上,故切線必垂直于切點與圓心連線,而切點與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2).【解析】(1)由題可得,利用導(dǎo)數(shù)與單調(diào)性關(guān)系分類討論即得;(2)由題可得,利用函數(shù)的單調(diào)性及極值求函數(shù)最值即得.【小問1詳解】由題可得的定義域為,若,恒有,當(dāng)時,,當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,若,令,得,若,恒有在上單調(diào)遞增,若,當(dāng)時,;當(dāng)時,,故在和上單調(diào)遞增,在上單調(diào)遞減,若,當(dāng)時,;當(dāng)時,,故在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述,當(dāng),在上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在上單調(diào)遞增,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】由(1)知,時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)a=1時,,,,∴.又,,∴.由題意得,,∴.18、(1)(2)【解析】設(shè)出,由直線的斜率為求得,結(jié)合離心率求得,再由隱含條件求得,即可求橢圓方程;(2)點軸時,不合題意;當(dāng)直線斜率存在時,設(shè)直線,聯(lián)立直線方程和橢圓方程,由判別式大于零求得的范圍,再由弦長公式求得,由點到直線的距離公式求得到的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進(jìn)一步求出值,則直線方程可求.試題解析:(1)設(shè),因為直線的斜率為,所以,.又解得,所以橢圓的方程為.(2)解:設(shè)由題意可設(shè)直線的方程為:,聯(lián)立消去得,當(dāng),所以,即或時.所以點到直線的距離所以,設(shè),則,,當(dāng)且僅當(dāng),即,解得時取等號,滿足所以的面積最大時直線的方程為:或.【方法點晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.19、(1)或(2)或【解析】(1)先設(shè)出圓的標(biāo)準(zhǔn)方程,利用點在圓上和圓心在直線上得到圓心坐標(biāo)的方程組,進(jìn)而求出圓的標(biāo)準(zhǔn)方程;(2)先利用原點在圓內(nèi)求出圓的方程,設(shè)出切線方程,利用圓心到切線的距離等于半徑進(jìn)行求解.【小問1詳解】解:設(shè)圓的標(biāo)準(zhǔn)方程為,由已知得,解得或,故圓的方程為或.【小問2詳解】解:因為,,且原點在圓內(nèi),故圓的方程為,則圓心為,半徑為,設(shè)切線為,即,則,解得或,故切線為或,即或即為所求.20、(1)400(2)(3)【解析】(1)根據(jù)分層抽樣的方法,列出關(guān)系式計算即可;(2)根據(jù)分層抽樣的方法,求出抽取的女生人數(shù),進(jìn)而列舉出從樣本中抽取2人的所有情況,可根據(jù)古典概型的概率公式計算即可;(3)求出樣本平均數(shù),進(jìn)而求出與樣本平均數(shù)之差的絕對值不超過5的數(shù),從而利于古典概型的概率公式計算即可.【小問1詳解】設(shè)該???cè)藬?shù)為n人,由題意得,所以,.【小問2詳解】設(shè)所抽樣本中有m個女生,因為用分層抽樣的方法在高一學(xué)生中抽取一個容量為5的樣本,所以,解得.所以抽取了2名女生,3名男生,分別記作,;,,,則從中任取2人的所有基本事件為:,,,,,,,,,,共10個,其中至少有1名女生的基本事件有,,,,,,,共7個,所以從中任取2人,至少有1名女生的概率為.【小問3詳解】樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對值不超過5的數(shù)為94,86,92,87,90,93這6個數(shù),總的個數(shù)為8,所以該數(shù)與樣本平均數(shù)之差的絕對值不超過5的概率為.21、(1);(2).【解析】(1)首先根據(jù)三角函數(shù)恒等變換得到,再求其單調(diào)增區(qū)間即可.(2)根據(jù)得到,根據(jù)余弦定理和基本不等式得到,結(jié)合三角形面積公式計算即可.【小問1詳解】由題意.由,得,令,得,所以在上的單調(diào)遞增區(qū)間是【小問2詳解】因為,所以,得,又C是銳角,所以,由余弦定理:,得,所以,且當(dāng)時等號成立所以,故面積最大值為22、(1)證明過程見解析(2)【解析】(1)由線線平行證明線面平行;(2)建立空間直角坐標(biāo)系,利用空間向量進(jìn)行求解二面角的余弦值.【小問1詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)健康大數(shù)據(jù)平臺下的趨勢預(yù)測可視化系統(tǒng)設(shè)計
- 職業(yè)健康體檢漏診風(fēng)險預(yù)警模型構(gòu)建
- 黑龍江2025年黑龍江省能源環(huán)境研究院招聘博士科研人員筆試歷年參考題庫附帶答案詳解
- 阿拉善2025年內(nèi)蒙古阿拉善盟林業(yè)和草原保護(hù)站科研助理崗位招聘筆試歷年參考題庫附帶答案詳解
- 銅仁2025年貴州銅仁市德江縣城區(qū)中小學(xué)(園)緊缺學(xué)科專任教師考調(diào)130人筆試歷年參考題庫附帶答案詳解
- 鄭州2025年河南鞏義市招聘教師59人筆試歷年參考題庫附帶答案詳解
- 葫蘆島2025年遼寧葫蘆島市連山區(qū)招聘教師164人筆試歷年參考題庫附帶答案詳解
- 綿陽2025年四川綿陽江油市考調(diào)教師7人筆試歷年參考題庫附帶答案詳解
- 滁州2025年安徽滁州明光市城區(qū)學(xué)校選調(diào)教師40人筆試歷年參考題庫附帶答案詳解
- 海南2025年海南省疾病預(yù)防控制中心招聘學(xué)科帶頭人11人筆試歷年參考題庫附帶答案詳解
- 四川省高等教育自學(xué)考試畢業(yè)生登記表【模板】
- 專題五 以新發(fā)展理念引領(lǐng)高質(zhì)量發(fā)展
- (完整word)長沙胡博士工作室公益發(fā)布新加坡SM2考試物理全真模擬試卷(附答案解析)
- GB/T 6682-2008分析實驗室用水規(guī)格和試驗方法
- GB/T 22417-2008叉車貨叉叉套和伸縮式貨叉技術(shù)性能和強(qiáng)度要求
- GB/T 1.1-2009標(biāo)準(zhǔn)化工作導(dǎo)則 第1部分:標(biāo)準(zhǔn)的結(jié)構(gòu)和編寫
- 長興中學(xué)提前招生試卷
- 安全事故案例-圖片課件
- 螺紋的基礎(chǔ)知識
- 九年級(初三)第一學(xué)期期末考試后家長會課件
- 保健食品GMP質(zhì)量體系文件
評論
0/150
提交評論