版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2014-20152014-2015 學(xué)年浙江省寧波市鄞州區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷學(xué)年浙江省寧波市鄞州區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷 一、選擇題(每小題一、選擇題(每小題 4 4 分,共分,共 4848 分)分) 1已知,則代數(shù)式的值為() ABCD 2拋物線 y=2(x3)2+1 的頂點(diǎn)坐標(biāo)是() A (3,1)B (3,1)C (1,3)D (1,3) 3展覽館有 A,B 兩個(gè)入口, D、E、F 三個(gè)出口, 則從 A 入口進(jìn), F 出口出的概率是() ABCD 4在 RtABC 中, A=Rt ,AB=3,BC=4,則 cosB=() ABCD 5“圓柱與球的組合體”如圖所示,則它的三視圖是
2、() ABC D 6在平面直角坐標(biāo)系中,將拋物線y=3x2先向右平移 1 個(gè)單位,再向上平移2 個(gè)單位,得 到的拋物線的解析式是() Ay=3(x+1)2+2By=3(x+1)22Cy=3(x1)2+2Dy=3(x1)22 7如圖,PA、PB、分別切O 于 A、B 兩點(diǎn), P=40,則 C 的度數(shù)為() A40B140 C70D80 8 如圖, 若P為 ABC的邊AB上一點(diǎn) (ABAC) , 則下列條件不一定能保證 ACP ABC 的有() A ACP= BB APC= ACBC=D= 9如圖,在 ABC 中,AB=AC, BAC=90,BC=8,A 與 BC 相切于點(diǎn) D,且與 AB、 AC
3、 分別交于點(diǎn) E、F,則劣弧的長(zhǎng)是() AB2C3D4 10若二次函數(shù) y=ax2+bx+c 的 x 與 y 的部分對(duì)應(yīng)值如下表,則當(dāng) x=1 時(shí),y 的值為() x765432 y27133353 A5B3C13 D27 11如圖,拋物線 y=ax2+bx+c 與 x 軸的負(fù)半軸交于點(diǎn) A,B(點(diǎn) A 在點(diǎn) B 的右邊) ,與 y 軸的正半軸交于點(diǎn) C,且 OA=OC=1,則下列關(guān)系中正確的是() Aa+b=1Bb2aCab=1 Dac0 12 如圖, O 與射線 AM 相切于點(diǎn) B, 圓心 O 在射線 AN 上, O 半徑為 6cm, OA=10cm 點(diǎn) P 從點(diǎn) A 出發(fā),以 2cm/秒
4、的速度沿 AN 方向運(yùn)動(dòng),過 P 點(diǎn)作直線 l 垂直 AB,當(dāng) l 與O 相 切時(shí),所用時(shí)間是() A 秒 B 秒 C 秒或秒D 秒或秒 二、填空題(每小題二、填空題(每小題 4 4 分,共分,共 2424 分)分) 13有一個(gè)圓錐底面半徑為5,母線為 13,則它的側(cè)面積是_ (結(jié)果保留 ) 14二次函數(shù),當(dāng) x2 時(shí),y 隨 x 的增大而_ 15如圖,已知 BE 平分 ABC,DE BC,AD=3,DE=2,AC=4,則 AE=_ 16如圖,將半徑為 3 的圓形紙片,按下列順序折疊若 分的面積是_(結(jié)果保留 ) 和都經(jīng)過圓心 O,則陰影部 17 AB是O內(nèi)接正方形的一條邊長(zhǎng), AC是同一個(gè)O
5、內(nèi)接正六邊形的一條邊長(zhǎng), 則 BAC 的度數(shù)是_ 18如圖,ABC 中,AB=AC,BC=16,cosB= ,M,N 是 BC 上的點(diǎn),且 MAN= C, 則 BNCM 的值是_ 三、解答題(第三、解答題(第 1919 題題 6 6 分,第分,第 2020、2121 題各題各 8 8 分分,第,第 22222424 題各題各 1010 分,第分,第 2525 題題 1212 分,分, 第第 2626 題題 1414 分)分) 19計(jì)算:2sin30+cos30tan60+tan45 20 一個(gè)不透明的口袋里裝有2 個(gè)紅球、 1 個(gè)黃球和若干個(gè)綠球 (除顏色不同外其余都相同) , 若從中任意摸出
6、 1 個(gè)球是綠球的概率是 (1)求口袋中綠球的個(gè)數(shù); (2)若第一次從口袋中任意摸出1 個(gè)球,放回?cái)噭颍诙卧倜? 個(gè)球,用列表或畫樹 狀圖方法寫出所有可能性,并求出剛好摸到一個(gè)紅球和一個(gè)綠球的概率 21 (1)用直尺和圓規(guī)作出ABC 的外接圓 O(不寫作法,保留作圖痕跡) ; (2)若 BC=5, A=60,求O 的半徑長(zhǎng) 22如圖,為了測(cè)量某建筑物CD 的高度,先在地面上用測(cè)角儀自A 處測(cè)得建筑物頂部的 仰角是 30,然后在水平地面上向建筑物前進(jìn)了100m,此時(shí)自 B 處測(cè)得建筑物頂部的仰角 是 45已知測(cè)角儀的高度是1.5m,請(qǐng)你計(jì)算出該建筑物的高度 (取 到 1m) =1.732,
7、結(jié)果精確 23如圖,AE 是 ABC 外接圓 O 的直徑,連結(jié) BE,作 ADBC 于 D (1)求證: ABE ADC; (2)若 AB=8,AC=6,AE=10,求 AD 的長(zhǎng) 24某商品的進(jìn)價(jià)為每件50 元,售價(jià)為每件 60 元,每天可賣出 190 件;如果每件商品的售 價(jià)每上漲 1 元,則每天少賣10 件,設(shè)每件商品的售價(jià)上漲x 元(x 為正整數(shù)) ,每天的銷售 利潤(rùn)為 y 元 (1)求 y 關(guān)于 x 的關(guān)系式; (2)每件商品的售價(jià)定為多少元時(shí),每天的利潤(rùn)恰為1980 元? (3)每件商品的售價(jià)定為多少元時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少元? 25若一個(gè)四邊形的兩條對(duì)角線互相垂直
8、且相等, 則稱這個(gè)四邊形為“奇妙四邊形”如圖 1, 四邊形 ABCD 中,若 AC=BD,ACBD,則稱四邊形 ABCD 為奇妙四邊形根據(jù)“奇妙四 邊形”對(duì)角線互相垂直的特征可得“奇妙四邊形”的一個(gè)重要性質(zhì):“奇妙四邊形”的面積等于 兩條對(duì)角線乘積的一半根據(jù)以上信息回答: (1)矩形_“奇妙四邊形”(填“是”或“不是”) ; (2)如圖 2,已知O 的內(nèi)接四邊形 ABCD 是“奇妙四邊形”,若O 的半徑為 6, BCD=60求“奇妙四邊形”ABCD 的面積; (3)如圖3,已知O 的內(nèi)接四邊形 ABCD 是“奇妙四邊形”作 OMBC 于 M請(qǐng)猜測(cè)OM 與 AD 的數(shù)量關(guān)系,并證明你的結(jié)論 26
9、 (14 分)如圖,拋物線與 x 軸交于點(diǎn) A(2,0)和 B(6,0) ,與 y 軸交于點(diǎn) C(0, 3) (1)求此拋物線的解析式和頂點(diǎn)D 的坐標(biāo); (2)連結(jié) BC、BD、CD,求證: BCD 是直角三角形; (3)過點(diǎn)B 作射線 BM CD,E 是線段 BC 上的動(dòng)點(diǎn),設(shè)BE=t作EFBC 交射線 BM 于 點(diǎn) F 證明: EBF DCB; 連結(jié) CF,當(dāng) ECF 與 DCB 相似時(shí),求出 t 的值; 記 S=S ECFS EBF,請(qǐng)直接寫出 S 取到最大值時(shí),t 的值和 EBF 內(nèi)切圓半徑 r 2014-20152014-2015 學(xué)年浙江省寧波市鄞州區(qū)九年級(jí)(上)期末數(shù)學(xué)年浙江省寧
10、波市鄞州區(qū)九年級(jí)(上)期末數(shù) 學(xué)試卷學(xué)試卷 一、選擇題(每小題一、選擇題(每小題 4 4 分,共分,共 4848 分)分) 1已知,則代數(shù)式的值為() ABCD 【考點(diǎn)】比例的性質(zhì) 【分析】用 b 表示出 a,然后代入比例式進(jìn)行計(jì)算即可得解 【解答】解: a= b, = , = 故選 B 【點(diǎn)評(píng)】本題考查了比例的性質(zhì),用b 表示出 a 是解題的關(guān)鍵 2拋物線 y=2(x3)2+1 的頂點(diǎn)坐標(biāo)是() A (3,1)B (3,1)C (1,3)D (1,3) 【考點(diǎn)】二次函數(shù)的性質(zhì) 【分析】直接根據(jù)拋物線的頂點(diǎn)坐標(biāo)式寫出頂點(diǎn)坐標(biāo)即可 【解答】解: 拋物線 y=2(x3)2+1, 頂點(diǎn)坐標(biāo)為(3,1
11、) , 故選 B 【點(diǎn)評(píng)】本題主要考查了二次函數(shù)的性質(zhì),熟知二次函數(shù)的頂點(diǎn)坐標(biāo)式是解答本題的關(guān)鍵, 此題難度不大 3展覽館有 A,B 兩個(gè)入口,D、E、F 三個(gè)出口,則從 A 入口進(jìn),F(xiàn) 出口出的概率是() ABCD 【考點(diǎn)】列表法與樹狀圖法 【分析】 根據(jù)兩個(gè)獨(dú)立事件同時(shí)發(fā)生的概率等于兩個(gè)獨(dú)立事件發(fā)生概率的積直接算出答案即 可 【解答】解: A,B 兩個(gè)入口,D、E、F 三個(gè)出口, 從 A 入口進(jìn)的概率為: ;從 F 出口出的概率為: , 從 A 入口進(jìn),F(xiàn) 出口出的概率是 = , 故選 C 【點(diǎn)評(píng)】 考查了獨(dú)立事件概率的求法, 解答時(shí)要牢記兩個(gè)獨(dú)立事件同時(shí)發(fā)生的概率等于兩個(gè) 獨(dú)立事件發(fā)生概
12、率的積,也可通過列表或樹狀圖法將所有情況全部列舉出來 4在 RtABC 中, A=Rt ,AB=3,BC=4,則 cosB=() ABCD 【考點(diǎn)】銳角三角函數(shù)的定義 【分析】根據(jù)題意畫出圖形,進(jìn)而得出cosB= 【解答】解: A=Rt ,AB=3,BC=4, 則 cosB= 故選:A 求出即可 【點(diǎn)評(píng)】此題主要考查了銳角三角函數(shù)的定義,正確把握銳角三角函數(shù)關(guān)系是解題關(guān)鍵 5“圓柱與球的組合體”如圖所示,則它的三視圖是() ABC D 【考點(diǎn)】簡(jiǎn)單組合體的三視圖 【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形 【解答】解:“圓柱與球的組合體”的三視圖依次為長(zhǎng)方形的上
13、邊有一個(gè)圓,長(zhǎng)方形的上邊有 一個(gè)圓,圓環(huán),故選 A 【點(diǎn)評(píng)】本題考查了幾何體的三種視圖,掌握定義是關(guān)鍵 6在平面直角坐標(biāo)系中,將拋物線y=3x2先向右平移 1 個(gè)單位,再向上平移2 個(gè)單位,得 到的拋物線的解析式是() Ay=3(x+1)2+2By=3(x+1)22Cy=3(x1)2+2Dy=3(x1)22 【考點(diǎn)】二次函數(shù)圖象與幾何變換 【專題】常規(guī)題型 【分析】 先根據(jù)拋物線的頂點(diǎn)式得到拋物線y=3x2的對(duì)稱軸為直線 x=0, 頂點(diǎn)坐標(biāo)為 (0, 0) , 則拋物線 y=3x2向右平移1 個(gè)單位, 再向上平移2 個(gè)單位得到的拋物線的對(duì)稱軸為直線x=1, 頂點(diǎn)坐標(biāo)為(1,2) ,然后再根據(jù)頂
14、點(diǎn)式即可得到平移后拋物線的解析式 【解答】解: 拋物線 y=3x2的對(duì)稱軸為直線 x=0,頂點(diǎn)坐標(biāo)為(0,0) , 拋物線 y=3x2向右平移1 個(gè)單位, 再向上平移2 個(gè)單位得到的拋物線的對(duì)稱軸為直線x=1, 頂點(diǎn)坐標(biāo)為(1,2) , 平移后拋物線的解析式為y=3(x1)2+2 故選:C 【點(diǎn)評(píng)】 本題考查了二次函數(shù)圖象與幾何變換: 先把拋物線的解析式化為頂點(diǎn)式y(tǒng)=a (xk) 2+h,其中對(duì)稱軸為直線x=k,頂點(diǎn)坐標(biāo)為(k,h) ,若把拋物線先右平移m 個(gè)單位,向上平 移 n 個(gè)單位,則得到的拋物線的解析式為y=a(xkm)2+h+n;拋物線的平移也可理解為 把拋物線的頂點(diǎn)進(jìn)行平移 7如圖
15、,PA、PB、分別切O 于 A、B 兩點(diǎn), P=40,則 C 的度數(shù)為() A40B140 C70D80 【考點(diǎn)】切線長(zhǎng)定理;圓周角定理 【專題】計(jì)算題 【分析】連接 OA,OB 根據(jù)切線的性質(zhì)定理,切線垂直于過切點(diǎn)的半徑,即可求得 OAP, OBP 的度數(shù),根據(jù)四邊形的內(nèi)角和定理即可求的 AOB 的度數(shù),然后根據(jù)圓周角定理即 可求解 【解答】解: PA是圓的切線 OAP=90, 同理 OBP=90, 根據(jù)四邊形內(nèi)角和定理可得: AOB=360 OAP OBP P=360909040=140, ACB= AOB=70 故選 C 【點(diǎn)評(píng)】本題主要考查了切線的性質(zhì),以及圓周角定理,正確求得 AOB
16、 的度數(shù),是解決 本題的關(guān)鍵 8 如圖, 若P為 ABC的邊AB上一點(diǎn) (ABAC) , 則下列條件不一定能保證 ACP ABC 的有() A ACP= BB APC= ACBC=D= 【考點(diǎn)】相似三角形的判定 【專題】壓軸題 【分析】根據(jù)相似三角形的判定方法利用公共角 A 進(jìn)行求解 【解答】解: A= A, 當(dāng) APC= ACB 或 ACP= B 或 AC:AB=AP:AC 或 AC2=ABAP 時(shí), ACP ABC 故選 D 【點(diǎn)評(píng)】此題考查了相似三角形的判定: 有兩個(gè)對(duì)應(yīng)角相等的三角形相似; 有兩個(gè)對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似; 三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似 9
17、如圖,在 ABC 中,AB=AC, BAC=90,BC=8,A 與 BC 相切于點(diǎn) D,且與 AB、 AC 分別交于點(diǎn) E、F,則劣弧的長(zhǎng)是() AB2C3D4 【考點(diǎn)】切線的性質(zhì);弧長(zhǎng)的計(jì)算 【分析】連接 AD,可求得 AD 的長(zhǎng),再利用弧長(zhǎng)公式可求得 【解答】解:如圖,連接AD, 的長(zhǎng) BC 為A 的切線, ADBC, AB=AC, D 為 BC 中點(diǎn),且 BAC=90, BD=DC=AD= BC=4, 又 BAC=90, = 故選 B =2, 【點(diǎn)評(píng)】本題主要考查切線的性質(zhì),由條件證得D 為 BC 的中點(diǎn)求出半徑是解題的關(guān)鍵 10若二次函數(shù) y=ax2+bx+c 的 x 與 y 的部分對(duì)
18、應(yīng)值如下表,則當(dāng) x=1 時(shí),y 的值為() x765432 y27133353 A5B3C13 D27 【考點(diǎn)】待定系數(shù)法求二次函數(shù)解析式 【分析】由表可知,拋物線的對(duì)稱軸為x=3,頂點(diǎn)為(3,5) ,再用待定系數(shù)法求得二 次函數(shù)的解析式,再把 x=1 代入即可求得 y 的值 【解答】解:設(shè)二次函數(shù)的解析式為y=a(xh)2+k, 當(dāng) x=4 或2 時(shí),y=3,由拋物線的對(duì)稱性可知h=3,k=5, y=a(x+3)2+5, 把(2,3)代入得,a=2, 二次函數(shù)的解析式為 y=2(x+3)2+5, 當(dāng) x=1 時(shí),y=27 故選 D 【點(diǎn)評(píng)】本題考查了待定系數(shù)法求二次函數(shù)的解析式, 拋物線是
19、軸對(duì)稱圖形,由表看出拋物 線的對(duì)稱軸為 x=3,頂點(diǎn)為(3,5) ,是本題的關(guān)鍵 11如圖,拋物線 y=ax2+bx+c 與 x 軸的負(fù)半軸交于點(diǎn) A,B(點(diǎn) A 在點(diǎn) B 的右邊) ,與 y 軸的正半軸交于點(diǎn) C,且 OA=OC=1,則下列關(guān)系中正確的是() Aa+b=1Bb2aCab=1 Dac0 【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系 【分析】由拋物線與 y 軸相交于點(diǎn) C,就可知道 C 點(diǎn)的坐標(biāo)(0,1)以及 A 的坐標(biāo),然后 代入函數(shù)式,即可得到答案 【解答】解:A 不正確:由圖象可知,直線AC:y=x+1,當(dāng) x=1 時(shí),a+b+11+1,即 a+b 1; B 不正確:由圖象可知,1,解
20、得 b2a; C 正確:由拋物線與 y 軸相交于點(diǎn) C,就可知道 C 點(diǎn)的坐標(biāo)為(0,c) , 又因?yàn)?OC=OA=1, 所以 C(0,1) ,A(1,0) , 把它代入 y=ax2+bx+c, 即 a(1)2+b(1)+1=0, 即 ab+1=0, 所以 ab=1 D 不正確:由圖象可知,拋物線開口向上,所以a0;又因?yàn)?c=1,所以 ac0 故選:C 【點(diǎn)評(píng)】 本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系, 解題的關(guān)鍵是了解各系數(shù)對(duì)函數(shù)的圖象 的影響 12 如圖, O 與射線 AM 相切于點(diǎn) B, 圓心 O 在射線 AN 上, O 半徑為 6cm, OA=10cm 點(diǎn) P 從點(diǎn) A 出發(fā),以 2c
21、m/秒的速度沿 AN 方向運(yùn)動(dòng),過 P 點(diǎn)作直線 l 垂直 AB,當(dāng) l 與O 相 切時(shí),所用時(shí)間是() A 秒 B 秒 C 秒或秒D 秒或秒 【考點(diǎn)】直線與圓的位置關(guān)系 【專題】動(dòng)點(diǎn)型;分類討論 【分析】當(dāng) l 平移到 l和 l時(shí),與O 相切,切點(diǎn)分別為C 點(diǎn)和 D 點(diǎn),如圖,根據(jù)切線的性 質(zhì)得到四邊形 BOCE 和四邊形 BODF 都是矩形,則BE=OC=6,BF=OD=6,在Rt AOB 中 利用勾股定理計(jì)算出 AB=8, 則 AE=ABBE=2, AF=AB+BF=14, 利用 PE OB 得到=, 利用比例性質(zhì)可計(jì)算出AP= ,易得點(diǎn)P 運(yùn)動(dòng)的時(shí)間為 秒;接著證明 QOD QAF,利
22、 用相似比計(jì)算出 AQ=,易得點(diǎn) P 運(yùn)動(dòng)到點(diǎn) Q 時(shí)的時(shí)間為秒 【解答】解:當(dāng) l 平移到 l和 l時(shí),與O 相切,切點(diǎn)分別為 C 點(diǎn)和 D 點(diǎn),如圖, 則 OC=OD=6,OCl,ODl, O 與射線 AM 相切于點(diǎn) B, OBAM, lAB, 四邊形 BOCE 和四邊形 BODF 都是矩形, BE=OC=6,BF=OD=6, 在 Rt AOB 中, OB=6,OA=10, AB=8, AE=ABBE=2,AF=AB+BF=14, PE OB, =,即= , AP= , 點(diǎn) P 運(yùn)動(dòng)的時(shí)間= 2= (秒) ; OD AF, QOD QAF, =,即 , 2=(秒) , 秒 =, AQ= 點(diǎn)
23、 P 運(yùn)動(dòng)到點(diǎn) Q 時(shí)的時(shí)間= 即當(dāng) l 與O 相切時(shí),所用時(shí)間為 秒或 故選 C 【點(diǎn)評(píng)】本題考查了直線和圓的位置關(guān)系:設(shè)O 的半徑為 r,圓心O 到直線 l 的距離為 d, 則直線 l 和O 相交dr;直線 l 和O 相切d=r;直線 l 和O 相離dr也考查了 矩形的性質(zhì)和相似三角形的判定與性質(zhì) 二、填空題(每小題二、填空題(每小題 4 4 分,共分,共 2424 分)分) 13有一個(gè)圓錐底面半徑為5,母線為 13,則它的側(cè)面積是 65 (結(jié)果保留 ) 【考點(diǎn)】圓錐的計(jì)算 【分析】首先求得圓錐的底面周長(zhǎng),然后利用扇形的面積公式即可求解 【解答】解:圓錐的底面周長(zhǎng)是:25=10, 則 10
24、13=65 故答案為:65 【點(diǎn)評(píng)】 本題考查了圓錐的計(jì)算, 正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解 決本題的關(guān)鍵,理解圓錐的母線長(zhǎng)是扇形的半徑,圓錐的底面圓周長(zhǎng)是扇形的弧長(zhǎng) 14二次函數(shù),當(dāng) x2 時(shí),y 隨 x 的增大而減小 【考點(diǎn)】二次函數(shù)的性質(zhì) 【分析】利用二次函數(shù)開口方向以及對(duì)稱軸兩側(cè)增減性相反進(jìn)而得出答案 【解答】解:二次函數(shù), a= 0, 當(dāng) x2 時(shí),y 隨 x 的增大而減小 故答案為:減小 【點(diǎn)評(píng)】此題主要考查了函數(shù)圖象的性質(zhì),利用開口方向得出增減性是解題關(guān)鍵 15如圖,已知 BE 平分 ABC,DE BC,AD=3,DE=2,AC=4,則 AE=2.4 【考點(diǎn)】
25、平行線分線段成比例;等腰三角形的判定與性質(zhì) 【分析】如圖,首先證明BD=DE,求出AB=5;證明ADE ABC,列出比例式 求出 AE 即可解決問題 【解答】解:如圖, BE 平分 ABC,DE BC, DBE= CBE, DEB= CBE, DBE= DEB, DB=DE=2,AB=AD+DB=5; DE BC, ADE ABC, ,而 AC=4,AD=3, AE=2.4, 故答案為 2.4 , 【點(diǎn)評(píng)】 該題主要考查了等腰三角形的判定、 相似三角形的判定及其性質(zhì)等幾何知識(shí)點(diǎn)及其 應(yīng)用問題;牢固掌握等腰三角形的判定、相似三角形的判定及其性質(zhì)是解題的關(guān)鍵 16如圖,將半徑為 3 的圓形紙片,按
26、下列順序折疊若 分的面積是 3(結(jié)果保留 ) 和都經(jīng)過圓心 O,則陰影部 【考點(diǎn)】翻折變換(折疊問題) 【專題】壓軸題;操作型 【分析】作 ODAB 于點(diǎn) D,連接 AO,BO,CO,求出 OAD=30,得到 AOB=2 AOD=120,進(jìn)而求得 AOC=120,再利用陰影部分的面積=S 扇形AOC 求解 【解答】解;如圖,作 ODAB 于點(diǎn) D,連接 AO,BO,CO, OD= AO, OAD=30, AOB=2 AOD=120, 同理 BOC=120, AOC=120, 陰影部分的面積=S 扇形AOC= 故答案為:3 =3 【點(diǎn)評(píng)】本題主要考查了折疊問題,解題的關(guān)鍵是確定 AOC=120
27、17 AB是O內(nèi)接正方形的一條邊長(zhǎng), AC是同一個(gè)O內(nèi)接正六邊形的一條邊長(zhǎng), 則 BAC 的度數(shù)是 105或 15 【考點(diǎn)】正多邊形和圓 【分析】根據(jù)題意畫出圖形,根據(jù)正方形與正六邊形的性質(zhì)求出與的度數(shù),根據(jù)圓周 角與弦的關(guān)系即可得出結(jié)論 【解答】解:如圖所示, AB 是O 內(nèi)接正方形的一條邊長(zhǎng),AC 是同一個(gè)O 內(nèi)接正六邊形的一條邊長(zhǎng), =90,=60 當(dāng)點(diǎn) C 在 C1的位置時(shí), 優(yōu)弧=3609060=210, BAC1= 210=105; 當(dāng)點(diǎn) C 在 C2的位置時(shí),=9060=30, BAC2= 30=15 綜上所述, BAC 的度數(shù)是 105或 15 故答案為:105或 15 【點(diǎn)評(píng)
28、】本題考查的是正多邊形和圓,在解答此題時(shí)要進(jìn)行分類討論,不要漏解 18如圖,ABC 中,AB=AC,BC=16,cosB= ,M,N 是 BC 上的點(diǎn),且 MAN= C, 則 BNCM 的值是 100 【考點(diǎn)】相似三角形的判定與性質(zhì) 【分析】如圖,作輔助線;求出AB=10;證明ABN MCA,得到 BNCM=ABAC=100 【解答】解:如圖,過點(diǎn)A 作 APBC 于點(diǎn) P AB=AC,BC=16, BP=PC=8, B= C;而 cosB= , ,AB=10; ,故 MAN= C, MAN+ NAC= NAC+ C; MAC= MAN+ NAC, ANB= NAC+ C, MAC= ANB,
29、而 B= C, ABN MCA, , BNCM=ABAC=100 故答案為 100 【點(diǎn)評(píng)】 該題主要考查了相似三角形的判定及其性質(zhì)、 等腰三角形的性質(zhì)等知識(shí)點(diǎn)及其應(yīng)用 問題;牢固掌握相似三角形的判定及其性質(zhì)、等腰三角形的性質(zhì)是解題的基礎(chǔ)和關(guān)鍵 三、解答題(第三、解答題(第 1919 題題 6 6 分,第分,第 2020、2121 題各題各 8 8 分,第分,第 22222424 題各題各 1010 分,第分,第 2525 題題 1212 分,分, 第第 2626 題題 1414 分)分) 19計(jì)算:2sin30+cos30tan60+tan45 【考點(diǎn)】特殊角的三角函數(shù)值 【分析】根據(jù)特殊角
30、的三角函數(shù)值進(jìn)行計(jì)算即可 【解答】解:原式=2 +()2+1 =1+ +1 =3 【點(diǎn)評(píng)】本題考查了特殊角的三角函數(shù)值, 是各地中考題中常見的計(jì)算題型 解決此類題目 的關(guān)鍵是熟記特殊角的三角函數(shù)值的運(yùn)算 20 一個(gè)不透明的口袋里裝有2 個(gè)紅球、 1 個(gè)黃球和若干個(gè)綠球 (除顏色不同外其余都相同) , 若從中任意摸出 1 個(gè)球是綠球的概率是 (1)求口袋中綠球的個(gè)數(shù); (2)若第一次從口袋中任意摸出1 個(gè)球,放回?cái)噭?,第二次再摸? 個(gè)球,用列表或畫樹 狀圖方法寫出所有可能性,并求出剛好摸到一個(gè)紅球和一個(gè)綠球的概率 【考點(diǎn)】列表法與樹狀圖法 【分析】 (1)首先設(shè)袋中的綠球個(gè)數(shù)為x 個(gè),然后根據(jù)
31、古典概率的知識(shí)列方程,解方程即可 求得答案; (2)首先畫樹狀圖,然后求得全部情況的總數(shù)與符合條件的情況數(shù)目,求其二者的比值即 可 【解答】解: (1)設(shè)袋中的綠球個(gè)數(shù)為 x 個(gè), = , 解得:x=1, 經(jīng)檢驗(yàn),x=1 是原方程的解, 袋中綠球的個(gè)數(shù) 1 個(gè); (2)畫樹狀圖得: , 則一共有 12 種情況, 兩次摸到球的顏色是一紅一綠這種組合的有2 種, 故兩次摸到球的顏色是一紅一綠這種組合的概率為:= 【點(diǎn)評(píng)】 本題考查了用列表法或畫樹狀圖法求概率 列表法或畫樹狀圖法可以不重復(fù)不遺漏 的列出所有可能的結(jié)果,適合于兩步完成的事件用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總 情況數(shù)之比 21 (1)
32、用直尺和圓規(guī)作出ABC 的外接圓 O(不寫作法,保留作圖痕跡) ; (2)若 BC=5, A=60,求O 的半徑長(zhǎng) 【考點(diǎn)】作圖復(fù)雜作圖;三角形的外接圓與外心 【分析】 (1)首先作出 AB、BC 的垂直平分線,兩線的交點(diǎn)就是外接圓的圓心; (2)根據(jù)圓周角定理可得 BOC=120,再根據(jù)等腰三角形的性質(zhì)可得 BOH=60, BH= BC=,然后利用三角函數(shù)求出BO 的長(zhǎng)即可 【解答】解: (1)如圖所示: (2)連接 BO,CO, A=60, BOC=120, EF 是 BC 的垂直平分線,BO=CO, BOH=60,BH= BC= OBH=30, BO=5 , 【點(diǎn)評(píng)】此題主要考查了復(fù)雜作
33、圖, 以及圓周角定理和垂徑定理, 關(guān)鍵是掌握三角形外接圓 的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心 22如圖,為了測(cè)量某建筑物CD 的高度,先在地面上用測(cè)角儀自A 處測(cè)得建筑物頂部的 仰角是 30,然后在水平地面上向建筑物前進(jìn)了100m,此時(shí)自 B 處測(cè)得建筑物頂部的仰角 是 45已知測(cè)角儀的高度是1.5m,請(qǐng)你計(jì)算出該建筑物的高度 (取 到 1m) =1.732,結(jié)果精確 【考點(diǎn)】解直角三角形的應(yīng)用-仰角俯角問題 【專題】壓軸題 【分析】根據(jù) CE=xm,則由題意可知 BE=xm,AE=(x+100)m,再利用解直角得出 x 的值, 即可得出 CD 的長(zhǎng) 【解答】解:設(shè) CE=
34、xm,則由題意可知 BE=xm,AE=(x+100)m 在 Rt AEC 中,tan CAE= 即 tan30= 3x= , , (x+100) , =136.6, , 解得 x=50+50 CD=CE+ED=136.6+1.5=138.1138(m) 答:該建筑物的高度約為138m 【點(diǎn)評(píng)】此題主要考查了解直角三角形的應(yīng)用,根據(jù)tan CAE=得出 x 的值是解決問題 的關(guān)鍵 23如圖,AE 是 ABC 外接圓 O 的直徑,連結(jié) BE,作 ADBC 于 D (1)求證: ABE ADC; (2)若 AB=8,AC=6,AE=10,求 AD 的長(zhǎng) 【考點(diǎn)】相似三角形的判定與性質(zhì);圓周角定理 【
35、分析】 (1)如圖,證明 ABE= ADC=90, E= C,即可解決問題 (2)由 ABE ADC,列出比例式,求出 AD 即可解決問題 【解答】 解: (1)如圖, AE 是 ABC 外接圓 O 的直徑,且 ADBC, ABE= ADC=90;而 E= C, ABE ADC (2) ABE ADC, ,而 AB=8,AC=6,AE=10, AD=4.8 【點(diǎn)評(píng)】 該題主要考查了相似三角形的判定及其性質(zhì)、 圓周角定理及其推論等幾何知識(shí)點(diǎn)及 其應(yīng)用問題;解題的關(guān)鍵是深入觀察圖形結(jié)構(gòu)特點(diǎn), 數(shù)形結(jié)合,準(zhǔn)確找出圖形中隱含的相等 或相似關(guān)系 24某商品的進(jìn)價(jià)為每件50 元,售價(jià)為每件 60 元,每天
36、可賣出 190 件;如果每件商品的售 價(jià)每上漲 1 元,則每天少賣10 件,設(shè)每件商品的售價(jià)上漲x 元(x 為正整數(shù)) ,每天的銷售 利潤(rùn)為 y 元 (1)求 y 關(guān)于 x 的關(guān)系式; (2)每件商品的售價(jià)定為多少元時(shí),每天的利潤(rùn)恰為1980 元? (3)每件商品的售價(jià)定為多少元時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少元? 【考點(diǎn)】二次函數(shù)的應(yīng)用;一元二次方程的應(yīng)用 【分析】 (1)利用銷量乘以每件利潤(rùn)=總利潤(rùn)得出關(guān)系式即可; (2)利用(1)中所求關(guān)系式,進(jìn)而使y=1980 進(jìn)而得出即可; (3)利用配方法求出二次函數(shù)最值,結(jié)合x 的取值范圍得出答案 【解答】解: (1)設(shè)每件商品的售價(jià)上漲x
37、 元(x 為正整數(shù)) ,每天的銷售利潤(rùn)為 y 元, 則 y=(6050+x) (19010 x)=10 x2+90 x+1900; (2)當(dāng) y=1980,則 1980=10 x2+90 x+1900, 解得:x1=1,x2=8 故每件商品的售價(jià)定為 61 元或 68 元時(shí),每天的利潤(rùn)恰為1980 元; (3)y=10 x2+90 x+1900=10(x )2+2102.5, 故當(dāng) x=5 或 4 時(shí),y=2100(元) , 即每件商品的售價(jià)定為 64 元或 65 元時(shí),每天可獲得最大利潤(rùn),最大利潤(rùn)是2100 元 【點(diǎn)評(píng)】 此題主要考查了二次函數(shù)的應(yīng)用以及一元二次方程的解法, 得出 y 與 x
38、 的函數(shù)關(guān)系 式是解題關(guān)鍵 25若一個(gè)四邊形的兩條對(duì)角線互相垂直且相等, 則稱這個(gè)四邊形為“奇妙四邊形”如圖 1, 四邊形 ABCD 中,若 AC=BD,ACBD,則稱四邊形 ABCD 為奇妙四邊形根據(jù)“奇妙四 邊形”對(duì)角線互相垂直的特征可得“奇妙四邊形”的一個(gè)重要性質(zhì):“奇妙四邊形”的面積等于 兩條對(duì)角線乘積的一半根據(jù)以上信息回答: (1)矩形不是“奇妙四邊形”(填“是”或“不是”) ; (2)如圖 2,已知O 的內(nèi)接四邊形 ABCD 是“奇妙四邊形”,若O 的半徑為 6, BCD=60求“奇妙四邊形”ABCD 的面積; (3)如圖3,已知O 的內(nèi)接四邊形 ABCD 是“奇妙四邊形”作 OM
39、BC 于 M請(qǐng)猜測(cè)OM 與 AD 的數(shù)量關(guān)系,并證明你的結(jié)論 【考點(diǎn)】圓的綜合題 【專題】綜合題 【分析】 (1)根據(jù)矩形的性質(zhì)和“奇妙四邊形”的定義進(jìn)行判斷; (2)連結(jié) OB、OD,作 OHBD 于 H,如圖 2,根據(jù)垂徑定理得到 BH=DH,根據(jù)圓周角 定理得到 BOD=2 BCD=120,則利用等腰三角形的性質(zhì)得 OBD=30,在 Rt OBH 中 可計(jì)算出 BH=OH=3,BD=2BH=6,則 AC=BD=6,然后根據(jù)奇妙四邊形”的面 積等于兩條對(duì)角線乘積的一半求解; (3)連結(jié)OB、OC、OA、OD,作 OEAD 于 E,如圖 3,根據(jù)垂徑定理得到AE=DE,再 利用圓周角定理得到
40、 BOM= BAC, AOE= ABD,再利用等角的余角相等得到 OBM= AOE,則可證明 BOM OAE 得到 OM=AE,于是有 OM= AD 【解答】解: (1)矩形的對(duì)角線相等但不垂直, 所以矩形不是“奇妙四邊形”; 故答案為不是; (2)連結(jié) OB、OD,作 OHBD 于 H,如圖 2,則 BH=DH, BOD=2 BCD=260=120, OBD=30, 在 Rt OBH 中, OBH=30, OH= OB=3, BH=OH=3, , , 6=54; BD=2BH=6 AC=BD=6 “奇妙四邊形”ABCD 的面積= 6 (3)OM= AD理由如下: 連結(jié) OB、OC、OA、OD,作 OEAD 于 E,如圖 3, OEAD, AE=DE, BOC=2 BAC, 而 BOC=2 BOM, BOM= BAC, 同理可得 AOE= ABD, BDAC, BAC+ ABD=90, BOM+ AOE=90, BOM+ OBM=90, OBM= AOE, 在 BOM 和 OAE 中 , BOM OAE, OM=AE, OM= AD 【點(diǎn)評(píng)】本題考查了圓的綜合題:熟練掌握?qǐng)A周角定理、 垂徑定理、等腰三角形的性質(zhì)和矩 形的性質(zhì);會(huì)利用三角形全等解決線段相等的問題 26 (14 分)如圖,拋物線與 x 軸交于點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)金流量財(cái)務(wù)制度
- 代保管財(cái)務(wù)制度
- 往來財(cái)務(wù)制度
- 機(jī)關(guān)財(cái)務(wù)制度管理辦法
- 農(nóng)村機(jī)井管護(hù)制度
- 養(yǎng)老院老人健康監(jiān)測(cè)報(bào)告制度
- 攝影義賣活動(dòng)策劃方案(3篇)
- 春季景觀施工方案(3篇)
- 羊水栓塞并發(fā)ARDS的機(jī)械通氣方案
- 施工現(xiàn)場(chǎng)施工組織設(shè)計(jì)制度
- 淘寶網(wǎng)店合同
- 以房抵工程款合同協(xié)議6篇
- GB/T 222-2025鋼及合金成品化學(xué)成分允許偏差
- 申報(bào)個(gè)稅申請(qǐng)書
- 中秋福利采購項(xiàng)目方案投標(biāo)文件(技術(shù)方案)
- 固態(tài)電池技術(shù)在新能源汽車領(lǐng)域的產(chǎn)業(yè)化挑戰(zhàn)與對(duì)策研究
- 2025年廣電營(yíng)銷考試題庫
- 湖南省岳陽市平江縣2024-2025學(xué)年高二上學(xué)期期末考試語文試題(解析版)
- DB5101∕T 161-2023 公園城市鄉(xiāng)村綠化景觀營(yíng)建指南
- 2024-2025學(xué)年湖北省武漢市江漢區(qū)七年級(jí)(下)期末數(shù)學(xué)試卷
- 重慶市2025年高考真題化學(xué)試卷(含答案)
評(píng)論
0/150
提交評(píng)論