版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、隨機(jī)運籌學(xué),第6部分排隊論,1?;靖拍睿?。排隊論研究內(nèi)容排隊論是日常生活中常見的現(xiàn)象,如顧客去商店購物、病人去醫(yī)院看病、電信局的繁忙問題、車站、碼頭等交通樞紐的交通堵塞和改道、待修故障機(jī)器停機(jī)、水庫蓄水和水量調(diào)節(jié)等。排隊現(xiàn)象的根源是由于服務(wù)人員數(shù)量超過服務(wù)機(jī)構(gòu)數(shù)量,客戶無法立即獲得服務(wù)。如果增加了服務(wù)設(shè)備,就必須增加投資或閑置浪費;如果服務(wù)設(shè)備太少,排隊現(xiàn)象會很嚴(yán)重,給顧客和社會帶來不良影響。因此,管理者應(yīng)該考慮成本和收益之間的平衡。排隊論,又稱隨機(jī)服務(wù)系統(tǒng)理論,主要包括以下三個部分:1 .行為問題研究各種排隊系統(tǒng)的概率規(guī)律,主要研究排隊長度分布、等待時間分布和繁忙時段分布,包括瞬態(tài)和穩(wěn)態(tài)
2、情況。2.優(yōu)化問題主要包括靜態(tài)優(yōu)化和動態(tài)優(yōu)化,而靜態(tài)優(yōu)化是指優(yōu)化設(shè)計,動態(tài)優(yōu)化是指現(xiàn)有排隊系統(tǒng)的優(yōu)化運行。3.排隊系統(tǒng)的統(tǒng)計推斷決定了一個給定的排隊系統(tǒng)符合哪個模型,從而可以根據(jù)排隊論進(jìn)行分析和研究。第二,排隊過程通常意味著每個顧客從顧客來源(整體)開始,在到達(dá)服務(wù)機(jī)構(gòu)(服務(wù)臺、服務(wù)員)之前排隊等候接受服務(wù),并在服務(wù)完成后離開。排隊結(jié)構(gòu)指的是隊列的數(shù)量和排列,而排隊規(guī)則和服務(wù)規(guī)則描述的是顧客在排隊系統(tǒng)中接受服務(wù)的規(guī)則和順序。顧客來源,排隊結(jié)構(gòu),服務(wù)機(jī)制,排隊規(guī)則,服務(wù)規(guī)則,顧客到達(dá),離開,排隊系統(tǒng),排隊系統(tǒng)的組成和特點一般的排隊系統(tǒng)有三個基本組成部分:(1)輸入過程;(2)排隊規(guī)則;(3)服務(wù)
3、組織。1、輸入流程輸入是指顧客到達(dá)排隊系統(tǒng)。輸入有以下幾種情況:(1)客戶的客戶總數(shù)稱為客戶來源,它可以是有限的,也可以是無限的。例如,流入水庫的上游河水可以被認(rèn)為是無限的,工廠中只有有限的機(jī)器需要關(guān)閉進(jìn)行維修。(2)顧客可以一個接一個或分批到達(dá)。例如,在餐館就餐時,有一個客人到達(dá),一批客人被邀請參加宴會。(3)顧客陸續(xù)到達(dá)的時間間隔可以是確定性的,也可以是隨機(jī)的。例如,在自動裝配線上裝配的每個部件都必須在一定的時間間隔內(nèi)到達(dá)裝配點,普通公共汽車、班輪和航班的到達(dá)也是一定的。一般來說,去商店購物的顧客、去醫(yī)院的病人和通過十字路口的車輛的到來是隨機(jī)的。對于隨機(jī)情況,我們應(yīng)該知道每單位時間到達(dá)的顧
4、客數(shù)量或連續(xù)到達(dá)的間隔時間的概率分布。(4)顧客到達(dá)的相關(guān)性,顧客的到達(dá)可以是獨立的或相關(guān)的。例如,工廠中短時間間隔內(nèi)機(jī)器停機(jī)的概率受已維修或修理的機(jī)器數(shù)量的影響。(5)輸入過程可以是平穩(wěn)的(時間上是均勻的),這意味著描述連續(xù)到達(dá)的時間分布和參數(shù)(如期望值、方差等)。)與時間無關(guān)。否則,它被稱為不穩(wěn)定,這是很難用數(shù)學(xué)方法處理的。2.排隊規(guī)則(1)顧客到達(dá)的即時系統(tǒng)和等待系統(tǒng)。當(dāng)顧客到達(dá)時,所有服務(wù)臺都被占用,然后離開,這就是所謂的即時系統(tǒng)(掛失系統(tǒng));當(dāng)顧客到達(dá)時,所有的服務(wù)臺都被占用了,排隊等候被稱為等候系統(tǒng)。例如,普通本地電話的呼叫屬于即時系統(tǒng);登記市外長途電話的呼叫屬于等候系統(tǒng)。輪候制度
5、的幾項規(guī)則是:先到先得服務(wù)是按到達(dá)的先后次序接受的,這是最常見的情況。先到先得。例如,乘電梯的顧客是第一個出來的;倉庫中儲存的厚鋼板;最終到達(dá)的有價值的信息處理。隨機(jī)服務(wù)是指服務(wù)員隨機(jī)選擇一個等待服務(wù)的顧客,而不考慮到達(dá)的順序。例如,電話交換機(jī)連接一部呼叫電話。優(yōu)先服務(wù)例如,醫(yī)院將優(yōu)先治療重病患者。(2)從占用空間的角度來看,隊列可以安排在特定的位置或抽象的位置。例如,在特定的場所有售票處和候車室;在采樣點,有一個電話打給電話交換機(jī)。(3)從隊列數(shù)量的角度來看,它可以是單列或多列。在多列的情況下,每列中的一些客戶可以相互轉(zhuǎn)移,而其他客戶則不能(例如,被繩子或欄桿隔開)。一些排隊的顧客由于等待時
6、間長而中途退出,而另一些人卻不能退出(例如高速公路上的汽車流),必須堅持得到服務(wù)。3.根據(jù)組織形式和工作條件,服務(wù)組織有以下幾種情況:(1)服務(wù)組織可能沒有服務(wù)員或有一個或多個服務(wù)員(服務(wù)臺、通道、窗口等)。)。例如,在開架書店中,顧客選擇書籍時沒有服務(wù)員,但付款時可能不止一個服務(wù)員。(2)在多個服務(wù)臺的情況下,它們可以平行排列(并排)、前后排列(串聯(lián))或混合排列。例如,單一團(tuán)隊-單一服務(wù)臺的情況;多個團(tuán)隊-多個服務(wù)臺(并排);單個團(tuán)隊-多個服務(wù)臺(并排);多個服務(wù)臺(串聯(lián));多個服務(wù)臺(混合)。(3)服務(wù)模式可以針對單個客戶,也可以針對一組客戶。例如,公共汽車分批為在站臺等候的顧客服務(wù)。(4
7、)確定和隨機(jī)服務(wù)時間。自動洗車設(shè)備的清洗(服務(wù))時間是確定的,但在大多數(shù)情況下,服務(wù)時間是隨機(jī)的。對于隨機(jī)服務(wù)時間,我們需要知道它的概率分布。(5)服務(wù)時間的分配。人們總是假設(shè)服務(wù)時間是穩(wěn)定的,即分布參數(shù)如期望值、平方和差值不受時間的影響。第四,排隊模型的分類1953年肯德爾提出了排隊模型的分類方法,它有三個最有影響的特征:(1)連續(xù)顧客之間的間隔時間分布;(2)服務(wù)時間的分配;(3)服務(wù)臺數(shù)量。對于并行多服務(wù)器的情況,用肯德爾符號表示:X/Y/Z,其中X表示連續(xù)到達(dá)間隔時間的分布;y代表服務(wù)時間的分布;z表示平行服務(wù)臺的數(shù)量。x和y的類型是:m(負(fù))指數(shù)分布;確定型;Ek k階的Erlang
8、分布;一般獨立的時間間隔分布;g .一般服務(wù)時間的分配。例如,M/M/1意味著連續(xù)到達(dá)之間的間隔時間是(負(fù))指數(shù)分布,服務(wù)時間是(負(fù))指數(shù)分布;單一服務(wù)臺模式;D/M/c代表一個有確定到達(dá)間隔的模型,(負(fù))指數(shù)分布的服務(wù)時間和c平行服務(wù)臺(但客戶是一個團(tuán)隊)。1971年,肯德爾符號將X/Y/Z擴(kuò)展為X/Y/Z/A/B/C。其中,前三個含義保持不變,后三個含義為:A代表系統(tǒng)容量限制;b代表客戶來源的數(shù)量m;代表服務(wù)規(guī)則,如先到先得(FCFS)和后到先得(LCFS)。還商定,如果省略最后三項,則指的是X/Y/Z/FCFS的情況。5.解決排隊問題解決排隊問題的目的是研究排隊系統(tǒng)的效率,估計服務(wù)質(zhì)量,
9、確定系統(tǒng)參數(shù)的最優(yōu)值,確定系統(tǒng)結(jié)構(gòu)是否合理,研究設(shè)計改進(jìn)措施。在排隊問題中,顧客到達(dá)時間和服務(wù)時間的分布需要由實際的測量數(shù)據(jù)來確定,當(dāng)問題被提出時,其他因素也被給出。排隊系統(tǒng)運行的基本量化指標(biāo)如下:1 .隊列領(lǐng)導(dǎo)和隊列領(lǐng)導(dǎo)是指系統(tǒng)中的客戶數(shù)量,其期望值記錄為最小二乘;排隊長度(Queue length)是指系統(tǒng)中排隊等待服務(wù)的顧客數(shù)量,其期望值記錄為LQ;系統(tǒng)中的客戶數(shù)量=隊列中等待服務(wù)的客戶數(shù)量。一般來說,團(tuán)隊領(lǐng)導(dǎo)(或隊列長度)越大,服務(wù)率就越低,而顧客最討厭的就是隊列中的成龍。2.停留時間和等待時間停留時間是指客戶在系統(tǒng)中的停留時間,其期望值記錄為WS;等待時間是指客戶在系統(tǒng)中排隊等待的時
10、間,其期望值記錄為WQ;停留時間=等待時間,服務(wù)時間3,忙期,忙期,是指從顧客到達(dá)空閑的服務(wù)機(jī)構(gòu)到服務(wù)機(jī)構(gòu)再次空閑的時間長度,即服務(wù)機(jī)構(gòu)持續(xù)的忙時間,與服務(wù)員的工作強(qiáng)度有關(guān)。繁忙期和在繁忙期內(nèi)完成服務(wù)的平均客戶數(shù)量都是衡量服務(wù)組織效率的指標(biāo)。4.系統(tǒng)狀態(tài)系統(tǒng)狀態(tài)是指系統(tǒng)中的客戶數(shù)量。如果系統(tǒng)中有N個客戶,則表示系統(tǒng)狀態(tài)為N,其可能值為:(1)當(dāng)隊長沒有限制時,n=0,1,2、(2)當(dāng)隊長有限制時,n=0,1,2、(3)即時系統(tǒng),當(dāng)服務(wù)臺數(shù)量為c時,n=0,1。在后一種情況下,狀態(tài)n表示正在工作(忙碌)的服務(wù)臺數(shù)量。在時間t,系統(tǒng)狀態(tài)為n的概率由Pn(t)和計算狀態(tài)概率Pn(t)的方法表示。首先
11、,要建立的包含Pn(t)的關(guān)系式一般是微分差分方程(關(guān)于t的微分方程和關(guān)于n的差分方程)。方程的解是一個瞬態(tài)解。找到一個暫時的解決方案并不容易,即使找到了,也很難使用它。因此,經(jīng)常使用它的極限limt Pn(t)=Pn,這被稱為穩(wěn)態(tài)或統(tǒng)計平衡解。穩(wěn)態(tài)的物理意義是系統(tǒng)運行無限長時間后,初始(t=0)出發(fā)狀態(tài)的概率分布(Pn(0),n0)的影響將消失,系統(tǒng)的狀態(tài)概率分布不再隨時間變化。t、Pn(t)、穩(wěn)態(tài)、瞬態(tài)、2。到達(dá)間隔和服務(wù)時間的分布。首先,用經(jīng)驗分布解決排隊問題,首先要根據(jù)原始數(shù)據(jù)對顧客到達(dá)間隔和服務(wù)時間間隔進(jìn)行經(jīng)驗分布,然后根據(jù)統(tǒng)計方法確定哪種理論分布,并估計其參數(shù)值。例1:1979年大
12、連港大港區(qū)500噸以上船舶到達(dá)的日記錄(不包括定期到達(dá)的船舶)如下。平均到達(dá)率=總到達(dá)次數(shù)/總天數(shù)=1271/365=3.48(船舶/天)。示例2服務(wù)組織是一個單一的服務(wù)臺,它以先到先得的方式提供服務(wù)。它記錄了41個客戶的到達(dá)時間和服務(wù)時間,總服務(wù)時間為127分鐘。2.泊松流3。指數(shù)分布。二郎分布3。指數(shù)分布的單服務(wù)器排隊系統(tǒng)分析。單服務(wù)器排隊系統(tǒng)的輸入過程服從泊松分布,服務(wù)時間服從指數(shù)分布。1.標(biāo)準(zhǔn)M/M/1模型(M/M/1/)標(biāo)準(zhǔn)M/M/1模型是指滿足以下條件的排隊系統(tǒng):(1)輸入過程中的顧客來源是無限的,顧客是單獨來的,相互獨立。一定時間內(nèi)的到達(dá)次數(shù)服從泊松分布,到達(dá)過程是穩(wěn)定的。(2)
13、排隊規(guī)則單一,對隊長沒有限制,服務(wù)先到先得。(3)服務(wù)機(jī)構(gòu)只有一個服務(wù)臺,每個客戶的服務(wù)時間是獨立的,服從相同的指數(shù)分布。另外,假設(shè)到達(dá)間隔時間和服務(wù)時間彼此獨立。例1根據(jù)病人就診和手術(shù)完成的時間記錄,醫(yī)院手術(shù)室隨機(jī)抽取100個工作小時,每小時就診病人數(shù)n出現(xiàn)。另外隨機(jī)選擇100個病例,所用時間為v(小時)。其中,數(shù)據(jù)如下:不同第二,當(dāng)系統(tǒng)容量有限(M/M/1/N/)時,如果系統(tǒng)的最大容量是N,對于單個服務(wù)臺的情況,排隊等候的客戶的最大數(shù)量是N-1。當(dāng)客戶在某個時間到達(dá)時,如果系統(tǒng)中已經(jīng)有n個客戶,則拒絕該客戶進(jìn)入系統(tǒng)。當(dāng)N=1時,即時情況;當(dāng)n時,容量是無限的。接待處,排隊,顧客,被拒,排隊
14、系統(tǒng),例2在一家理發(fā)店里有6把椅子,用來接待排隊理發(fā)的人。當(dāng)六把椅子都坐滿時,后來顧客沒有進(jìn)入商店就離開了。顧客的平均到達(dá)率是3人/小時,理發(fā)平均需要15分鐘。那么N=7是系統(tǒng)中客戶的最大數(shù)量,=3人/小時,=4人/小時。尋求:(1)顧客一到達(dá)就能理發(fā)的概率;(2)等待的顧客數(shù)量的期望值;(3)有效到達(dá)率;(4)顧客在理發(fā)店停留的預(yù)期時間;(5)在可能的顧客中不等待就離開的概率。3.當(dāng)客戶來源有限(M/M/1/m)時,假設(shè)有M臺機(jī)器(總客戶),機(jī)器因故障而停止,表示“到達(dá)”,待維修的機(jī)器排成一列,修理工是服務(wù)員。如果同一臺機(jī)器發(fā)生故障(到達(dá))并得到修理(服務(wù)結(jié)束后),它仍然可以發(fā)生故障并重新啟
15、動。M/M/1/m模型中的第四項是寫的,這意味著系統(tǒng)的容量沒有限制,但實際上它永遠(yuǎn)不會超過M,所以它與寫m/m/1/m/m有相同的含義。同樣,M打字員共用一臺打字機(jī),M會計分析師共用一臺計算機(jī)終端。服務(wù)臺指數(shù)分布排隊系統(tǒng)分析,I .標(biāo)準(zhǔn)M/M/c模型(M/M/c/)標(biāo)準(zhǔn)M/M/c模型和標(biāo)準(zhǔn)M/M/1模型的各種特性同時,規(guī)定每個服務(wù)臺的工作相互獨立,平均服務(wù)率相同。例1售票處有三個窗口,顧客的到達(dá)服從泊松過程,平均每分鐘到達(dá)率為0.9(人),服務(wù)(售票)時間服從指數(shù)分布,平均每分鐘服務(wù)率為0.4人?,F(xiàn)在,顧客到達(dá)后被排成一行,依次從免費窗口購票。這是一個M/M/c模型系統(tǒng),其中c=3,/=2.25,=2.25/31。第二,當(dāng)系統(tǒng)容量有限時(M/M/c/N/),讓系統(tǒng)的最大容量限制為N(c)。當(dāng)系統(tǒng)中的客戶數(shù)達(dá)到N(即隊列中的客戶數(shù)達(dá)到N-c)時,再來的客戶將被拒絕,其他條件與標(biāo)準(zhǔn)的M/M/c類型相同。例2:當(dāng)一個酒店要建在一個景點時,顧客的到達(dá)是泊松流,平均每天有()6個人,顧客的平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年撫州職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 2026年合肥職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試模擬試題帶答案解析
- 2026年川南幼兒師范高等??茖W(xué)校單招職業(yè)技能考試模擬試題帶答案解析
- 2026年德陽科貿(mào)職業(yè)學(xué)院單招職業(yè)技能筆試參考題庫帶答案解析
- 2026年德陽農(nóng)業(yè)科技職業(yè)學(xué)院單招綜合素質(zhì)筆試模擬試題帶答案解析
- 投資合作協(xié)議(2025年新興科技領(lǐng)域)
- 2026年昌吉職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考試題有答案解析
- 體育賽事贊助協(xié)議2025年
- 2026年哈爾濱城市職業(yè)學(xué)院單招綜合素質(zhì)考試模擬試題帶答案解析
- 2026年福州英華職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性考試參考題庫帶答案解析
- 2025年停車場車輛看管協(xié)議范本
- DB32-T 4444-2023 單位消防安全管理規(guī)范
- 金融糾紛調(diào)解制度
- 國開2024年《金融風(fēng)險管理》形考作業(yè)1-4答案
- 自愿放棄勞動合同書
- 新版質(zhì)量手冊宣貫培訓(xùn)
- 新版浙教版2024-2025學(xué)年度八年級數(shù)學(xué)上冊幾何復(fù)習(xí)專題卷含答案
- 1輸變電工程施工質(zhì)量驗收統(tǒng)一表式(線路工程)-2024年版
- 陜西省建筑場地墓坑探查與處理技術(shù)規(guī)程
- 山東教育云平臺填報方法-班主任角色
- 專題07 事件與概率(古典概率、條件概率、全概率公式、貝葉斯公式)小題綜合含解析 十年(2015-2024)高考真題數(shù)學(xué)分項匯編(全國用)
評論
0/150
提交評論