版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、相似三角形的應用,甘肅省隴南市武都區(qū) 兩水中學 唐小平,(一)相似三角形的判定,對應相等,對應成比例,夾角,三邊,(二)相似三角形的性質(zhì),對應角,對應邊,對應高,對應中線,對應角平分線,等于相似比,等于相似比的平方,一、回顧與復習,二、探索與應用 例1. 如圖所示,為了測量金字塔的高度OB,先豎一根已知長度的木棒OB,比較棒子的影長AB與金字塔的影長AB,即可近似算出金字塔的高度OB如果OB1m,AB2m,AB274m,求金字塔的高度OB.,解:太陽光是平行光線, OABOAB 又ABOABO90, OABOAB. OBOBABAB. OB (米) 答:金字塔高為137米,例2. 在ABC中,
2、AC=4,AB=5,D是AC上一動點,且ADE=B,設AD=x,AE=y,試寫出y與x之間的函數(shù)關系式,并畫出函數(shù)的圖像.,解: A=A , ADE=B , ADEABC. AD:AB=AE:AC. x:5=y:4. y=0.8x (0 x4).,例3、小王有一塊三角形余料ABC,它的邊BC=60cm,高線AD=40cm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.,(1) ASR與 ABC相似嗎?為什么?,(2)求正方形SPQR的面積.,(1)ASR與ABC相似嗎?為什么? (2)求正方形PQRS的面積. 分析:(1) ASRABC.理由是:,(2)由(1)可知, ASRABC.,四邊形PQRS是正方形,RSBC,ASR= B ARS= C,ASRABC.,設正方形PQRS的邊長為x cm, 則AE=(40-x)cm,解得,x=24. 所以正方形PQRS的面積為576cm2.,(相似三角形對應高的比等于相似比),例 3 解 析,40,60,三、思考與演練,1、 在ABC中,BC=a,DEBC,交AB于E,交AC于D, 求DE的長度.,2.已知:四邊形ABCD中,AC平分BCD, D= BAC. 求證:AC2=BCDC.,A,B,C,D,四、課堂小結(jié),這節(jié)課你有什么收獲呢
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建立包括財務制度
- 2026年個人理財規(guī)劃師個人投資規(guī)劃與風險控制習題集
- 祖堂衛(wèi)生制度
- 詩社財務制度
- 衛(wèi)生紙加工廠消毒制度
- 水產(chǎn)養(yǎng)殖財務制度
- 醫(yī)療機構(gòu)場所衛(wèi)生制度
- 食堂場所清潔衛(wèi)生制度
- 客房部衛(wèi)生獎罰制度
- 涼菜間衛(wèi)生規(guī)章制度
- DB50T 1839-2025 合川米粉生產(chǎn)技術(shù)規(guī)程
- 《文學理論》第九講:文學風格、流派與思潮
- 數(shù)值模擬實施方案(3篇)
- 2025年消防巡查員考試題庫
- (2025)版廉政知識測試題庫(含答案)
- JJF(蒙) 055-2023 熱變形、維卡軟化點溫度測定儀校準規(guī)范
- 2023年FIDIC業(yè)主咨詢工程師標準服務協(xié)議書
- 兒科護理文獻檢索
- 貴州省2024年高考真題政治試卷(含答案)
- 出口飼料生產(chǎn)、加工、存放企業(yè)檢驗檢疫監(jiān)管手冊
- 2025-2030中國氟化氫氨行業(yè)需求動向及企業(yè)營銷策略探討報告
評論
0/150
提交評論