版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2013.11.30,1.嘗試使用Alize+Spro+python構(gòu)建說(shuō)話人識(shí)別平臺(tái) (1)ALIZE version 3.x- http:/mistral.univ-avignon.fr/index_en.html-LIA_RAL- LIA_SpkDET (2)Spro4.0.1-http:/www.irisa.fr/metiss/guig/spro/index.html-Filter-bank cepstral features (3) python3.3.2 2.機(jī)器學(xué)習(xí)的哲學(xué)探索讀書(shū)筆記,參考素材,1.paper-ALIZE, a free toolkit for speaker r
2、ecognition 2.paper-ALIZE/SpkDet: a state-of-the-art open source software for speaker recognition 3.HTK -http:/htk.eng.cam.ac.uk/ 5.BILLs block”使用Alize等工具構(gòu)建說(shuō)話人識(shí)別平臺(tái)”-http:/ibillxia.github.io/blog/2013/04/26/building-speaker-recognition-system-using-alize-etc/ 6. ALIZE 3.0 - Open-source platform for sp
3、eaker recognition-/technical-committees/list/sl-tc/spl-nl/2013-05/ALIZE/,ALIZE介紹,The ALIZE project consists of a low level API (ALIZE) and a set of high level executables that form the LIA_RAL toolkit. The ensemble makes it possible to easily set up a speaker rec
4、ognition system for research purposes as well as develop industry based applications. LIA_RAL is a high level toolkit based on the low level ALIZE API. It consists of three sets of executables: LIA_SpkSeg, LIA_Utils and LIA_SpkDET. LIA_SpkSeg and LIA_Utils respectively include executables dedicated
5、to speaker segmentation and utility programs to handle ALIZE objects while LIA_SpkDet is developed to fulfil the main functions of a state-of-the-art speaker recognition system as described in the following figure.,ALIZE介紹,ALIZE does not include acoustic feature extraction but is compatible withSPro
6、 , HTK and RAW formats Score matrices can be exported in binary format easily handled by the BOSARIS toolkit,SPro介紹,spro is aimed at extracting features in the area of speaker recognition,you can extract features such as mfcc and lpc. SPro is a free speech signal processing toolkit which provides ru
7、ntime commands implementing standard feature extraction algorithms for speech related applications and a C library to implement new algorithms and to use SPro files within your own programs. SPro was originally designed for variable resolution spectral analysis but also provides for feature extracti
8、on techniques classically used in speech applications. There are commands for the following representations:filter-bank energies cepstral coefficients linear prediction derived representation,SPro介紹,Though the toolkit has been designed as a front-end for applications such as speech or speaker recogn
9、ition, we believe the library provides enough possibilities to implement various feature extraction algorithms easily (e.g. zero crossing rate). However, no command for such features is provided. The library, written in ANSI C, provides functions for the following: waveform signal input low-level si
10、gnal processing (FFT, LPC analysis, etc.) low-level feature processing (lifter, CMS, variance normalization, deltas, etc.) feature I/O,SPro介紹,The library does not provide for high-level feature extraction functions which directly converts a waveform into features, mainly because such functions would
11、 require a tremendous number of arguments in order to be versatile. However, it is rather trivial to write such a function for your particular needs using the SPro library.,SPro介紹,Filter-bank cepstral features The second filter-bank analysis tool,sfbcep, takes as input a waveform and output filter-b
12、ank derived cepstral features. The filter-bank processing is similar to what is done insfbank(see previous section). The cepstral coefficients are computed by DCTing the filter-bank log-magnitudes and possibly liftered. Optionally, the log-energy can be added to the feature vector. Insfbcep, the fra
13、me energy is calculated as the sum of the squared waveform samples after windowing. As for the magnitudes in the filter-bank, the log-energy are thresholded to keep them positive or null. The log-energies may be scaled to avoid differences between recordings. Mean and variance normalization of the s
14、tatic cepstral coefficients can be specified with the global-cmsand-normalizeoptions but do not apply to log-energies. The normalizations can be global (default) or based on a sliding window whose length is specified with-segment-length. Finally, first and second order derivatives of the cepstral co
15、efficients and of the log-energies can be appended to the feature vectors. When using delta features, the absolute log-energy can be suppressed using the-no-static-energyoption,第1步,特征提取MFCC,sfbcep.exe(MFCC),第2步, Silence removal 靜音檢測(cè)和去除,NormFeat.exe 先能量規(guī)整 EnergyDetector.exe 基于能量檢測(cè)的靜音去除,第3步, Features
16、Normalization 特征規(guī)整,NormFeat.exe 再使用這個(gè)工具進(jìn)行特征規(guī)整,第4步, World model training,TrainWorld.exe 訓(xùn)練UBM,第5步, Target model training,TrainWorld.exe 在訓(xùn)練好UBM的基礎(chǔ)上,訓(xùn)練training set和testing set的GMM,第6步, Testing,ComputeTest.exe 將testing set 的GMM在training set的GMM上進(jìn)行測(cè)試和打分,第7步, Score Normalization,ComputeNorm.exe 將得分進(jìn)行規(guī)整,第
17、8步, Compute EER 計(jì)算等錯(cuò)誤率,可以查查計(jì)算EER的matlab代碼,NIST SRE的官網(wǎng)上有下載(/iad/mig/tools/DETware_v2.1.targz.htm),others,關(guān)于各步驟中參數(shù)的問(wèn)題,可以在命令行“工具 -help”來(lái)查看該工具個(gè)參數(shù)的具體含義,另外還可參考Alize源碼中各個(gè)工具的test目錄中提供的實(shí)例, 而關(guān)于每個(gè)工具的作用及理論知識(shí)則需要查看相關(guān)論文。 常見(jiàn)問(wèn)題及解答: http:/mistral.univ-avignon.fr/mediawiki/index.php/Frequently_as
18、ked_questions 更多問(wèn)題請(qǐng)?jiān)贕oogle論壇(,Others-ALIZE中用到的功能(其它功能作用待研究),Others-淺談Python程序和C程序的整合,利用 ctypes 模塊整合 Python 程序和 C 程序 ctypes 是 Python 的一個(gè)標(biāo)準(zhǔn)模塊,它包含在 Python2.3 及以上的版本里。ctypes 是一個(gè) Python 的高級(jí)外部函數(shù)接口,它使得 Python 程序可以調(diào)用 C 語(yǔ)言編譯的靜態(tài)鏈接庫(kù)和動(dòng)態(tài)鏈接庫(kù)。運(yùn)用 ctypes 模塊,能夠在 Python 源程序中創(chuàng)建,訪問(wèn)和操作簡(jiǎn)單的或復(fù)雜的 C 語(yǔ)言數(shù)據(jù)類(lèi)型。最為重要的是 ctypes 模塊能夠在
19、多個(gè)平臺(tái)上工作,包括 Windows,Windows CE,Mac OS X,Linux,Solaris,F(xiàn)reeBSD,OpenBSD。,機(jī)器學(xué)習(xí)的哲學(xué)探索-A.學(xué)科前沿P32,使用CiteSpace 2描繪知識(shí)圖譜【附圖】,機(jī)器學(xué)習(xí)的哲學(xué)探索-A.學(xué)科前沿P32,1. 知識(shí)圖譜顯示的學(xué)科前沿:【附圖】,機(jī)器學(xué)習(xí)的哲學(xué)探索-A.學(xué)科前沿P32,2.重要的作者【附圖】,機(jī)器學(xué)習(xí)的哲學(xué)探索-A.學(xué)科前沿P32,3.前沿知識(shí)群:增強(qiáng)學(xué)習(xí);分類(lèi)技術(shù);數(shù)據(jù)挖掘 4.對(duì)知識(shí)群的分析得出,機(jī)器學(xué)習(xí)研究的兩種目的:增強(qiáng)自身的性能+學(xué)習(xí)到人類(lèi)可以理解的知識(shí),機(jī)器學(xué)習(xí)的哲學(xué)探索-B.機(jī)器學(xué)習(xí)研究的演化路徑P58,1.“增強(qiáng)學(xué)習(xí)”是機(jī)器學(xué)習(xí)研究中相對(duì)獨(dú)立的一個(gè)領(lǐng)域,是布魯克斯創(chuàng)立的行為主義人工智能研究范式在機(jī)器學(xué)習(xí)研究中的繼續(xù)。 2.“數(shù)據(jù)挖掘”將兩個(gè)曾經(jīng)對(duì)立的研究范式融合在一起,采用一種實(shí)用主義的態(tài)度共同解決實(shí)踐中的問(wèn)題。 以數(shù)據(jù)挖掘?yàn)楹诵牡慕y(tǒng)計(jì)學(xué)習(xí)處理的一個(gè)最重要或者最基本的問(wèn)題是“分類(lèi)”?;蛟S有人會(huì)認(rèn)為“分類(lèi)”是一個(gè)微不足道的過(guò)程,然而“分類(lèi)”卻遍布于智能的理解過(guò)程之中,及時(shí)向“機(jī)器人規(guī)劃”這樣的活動(dòng),也能夠構(gòu)建成為“分類(lèi)”問(wèn)題?;蛘哒f(shuō),目前整個(gè)機(jī)器學(xué)習(xí)的核心問(wèn)題就是一個(gè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年劇本殺運(yùn)營(yíng)公司員工晉升與調(diào)崗管理制度
- 2026年及未來(lái)5年中國(guó)金融軟件行業(yè)市場(chǎng)競(jìng)爭(zhēng)格局及投資前景展望報(bào)告
- 2025年社區(qū)智慧健康管理服務(wù)平臺(tái)技術(shù)創(chuàng)新與市場(chǎng)前景研究報(bào)告
- 機(jī)動(dòng)車(chē)檢測(cè)站培訓(xùn)內(nèi)容課件
- 中國(guó)科學(xué)院空間應(yīng)用工程與技術(shù)中心2025年校園招聘?jìng)淇碱}庫(kù)及1套完整答案詳解
- 2026年溫州市特種設(shè)備檢測(cè)科學(xué)研究院招聘?jìng)淇碱}庫(kù)及一套答案詳解
- 廈門(mén)銀行三明分行2026年社會(huì)招聘?jìng)淇碱}庫(kù)帶答案詳解
- 2025至2030中國(guó)塑料改性技術(shù)發(fā)展趨勢(shì)與產(chǎn)業(yè)升級(jí)路徑研究報(bào)告
- 2025-2030中國(guó)羽絨被行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030土木建筑項(xiàng)目可行性研究報(bào)告
- 江蘇省淮安市2024-2025學(xué)年七年級(jí)下學(xué)期期末歷史試題(含答案)
- 醫(yī)療器械胰島素泵市場(chǎng)可行性分析報(bào)告
- 地鐵施工現(xiàn)場(chǎng)防臺(tái)風(fēng)措施
- 種植業(yè)合作社賬務(wù)處理
- 【麗江玉龍旅游薪酬制度的創(chuàng)新研究6100字】
- 公司兩權(quán)分離管理制度
- 車(chē)輛叉車(chē)日常檢查記錄表
- 廣東高校畢業(yè)生“三支一扶”計(jì)劃招募考試真題2024
- 膠帶機(jī)硫化工藝.課件
- 種雞免疫工作總結(jié)
- 河南省商丘市柘城縣2024-2025學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
評(píng)論
0/150
提交評(píng)論