2014高三數(shù)學(xué)練習(xí)_第1頁
2014高三數(shù)學(xué)練習(xí)_第2頁
2014高三數(shù)學(xué)練習(xí)_第3頁
2014高三數(shù)學(xué)練習(xí)_第4頁
2014高三數(shù)學(xué)練習(xí)_第5頁
免費預(yù)覽已結(jié)束,剩余4頁可下載查看

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2014屆高三數(shù)學(xué)練習(xí)212014屆高三數(shù)學(xué)練習(xí)2一、填空題(每題5 5分,滿分7070分,將答案填在答題紙上)1.已知集合P=xx(x1)0,Q=x|y=ln(x1),則priQ=.2.若復(fù)數(shù)z=a2-1+(a+1)i(awR)是純虛數(shù),則z=.223.垂直于直線y=x+1且與圓x+y=1相切于第一象限的直線方程是.4 .在等比數(shù)列an中,若a7a9=4,a4=1,則&2的值是.5 .在用三分法求方程x3-2x-1=0的一個近似解時,現(xiàn)在已經(jīng)將一根鎖定在區(qū)間(1,2),則下一步可斷定該根所在的區(qū)間為.6.正三棱錐SABC中,BC=2,SB=J3,D、E分別是棱SA、SB上的點,Q為邊

2、AB的中點,SQ_L平面CDE,則三角形CDE的面積為.7 .已知等比數(shù)列an的前n項和為Sn,若a2a8=2a3a6,S5=-62,則a1的值是.8.設(shè)正實數(shù)x,y,z滿足x23xy+4y2z=0,則當(dāng)-z取得最小值時,x+2yz的最大值xy為.9 .由命題“永WR,x2+2x+mE0”是假命題,求得實數(shù)m的取值范圍是(a,y),則實數(shù)a的值是.x20,10.已知實數(shù)x,y滿足約束條件y之2x+l,(k為常數(shù)),若目標(biāo)函數(shù)z=2x+y的最大值是”,則實數(shù)x+y+k03 3k的值是.1.12. .過定點P(1,2)的直線在x軸與y軸正半軸上的截距分別為a、b,則4a2+b2的最小值11.已知函

3、數(shù)3x,x0,1f(x)=93,當(dāng)tw0,1時,2-2x,x(1(1,3f(f(t)W0,1,則實數(shù)t的取值范圍是2014屆高三數(shù)學(xué)練習(xí)227rrr13 .A,B是半徑為1的圓O上兩點,且/AOB=若點C是圓O上任意一點,則OA?BC的取值范圍3為.14 .已知為是首項為a,公差為1的等差數(shù)列,bn=上久.若對任意的nwN*,都有bn之b8成立,則實數(shù)ana的取值范圍是.二、解答題(本大題共6 6小題,共9090分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)15 .在ABC,已知(sinA+sinB+sinC)(sinB+sinC_sinA)=3sinBsinC.求角A值;(2)求了sinB-

4、cosC的最大值.16.在四柱ABCDAiBiCiDi中,已知平面AAiC_L平面ABCD,且AB=BC=CA=3,AD=CD=117 .(1)求證:BD_LAA1;(2)若E為棱BC的中點,求證:AE/平面DCC1D12014屆高三數(shù)學(xué)練習(xí)2317.如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9cm和15cm,從建筑物AB的頂部A看建筑物CD的視角CADD=45匕求BC的長度;在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為ZAPB=/DPC=艮問點P在何處時,a+P最???cP第V題圖【答案】18m;當(dāng)尸為。5而27)m

5、時,口+產(chǎn)取得最小值.【解析】試題分析;根據(jù)題中圖形和條件不難想到作的_LCD,垂足為,則可題中所有條件集中到兩個直角三角形中,由=百+/G4E,而在用ZL4C&h4Q中69tanADAE=,tanZCAE=,再由兩角和的正切公式即可求出tanADAC=tanfZDA十/辦的的值,又EiZMC=l,可求出月的值;由題意易得在兩直角三角形樹火尸,用水為尸中,可得Q1Stan0;=Jan戶二,再由兩角和的正切公式可求出tan(總+的表達式,由函數(shù)BP18BPf電=產(chǎn)一的特征,可通過導(dǎo)數(shù)求出函數(shù)的單調(diào)性和最值,進而求出tan(a+0的最小值,即可7耳 1 曲-135限定出色十。的最小值.試題

6、解析!作四_LCD,垂足為丁,則DE-6,設(shè)演 7=工,+tanZJ/Jff1一tanxtanDAE96 一十一一十一二XQXc=1,化簡得x215x54=0,解之得,x=18或x=3(舍)1-xx答:BC的長度為18m.,6分tanZC4D=tan(ZC4+ZDAE)=2014屆高三數(shù)學(xué)練習(xí)24設(shè)則 Ca 18-晨口 0 仃引,g,e7+詔7182十毋6(27+0廠八由(B+=:*-=-T T=1 1. .g g分%尸,915-產(chǎn)+1SJ135-r+18-1351 1-“/IS-f設(shè)/=+/C即-幻*,令/4)=0,因為口得上=15#-27,當(dāng)因為十 1-1350 恒成立,所以/口,所以 t

7、an(o:+#)0,口+真日!工),因為 y=團 x 在圖幻上是增函數(shù),所以當(dāng)才=156-27 時,s+內(nèi)取得最小信,2答!當(dāng)丑 P 為(15 痛-27)m 時,%+#取得最小值.*,分一TfZrAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAAAMAAAAAAAJ JAAAAAAJ JAAXV*AAXV*考點:1.兩角和差的正切公式,士直角三角形中正切的表示,3. .導(dǎo)導(dǎo)數(shù)在函散中的運用1&已知扇的方程為,+3-=4,點 2 是坐標(biāo)原點,直線,:尸二區(qū)與圓 C 交于兩點.(1)求上的的值范圍一設(shè) 5 想內(nèi))是線段上的點,且一-F+. .請請將盟表將盟表示為所的函數(shù).O

8、QfOMf|W|2【答案】【答案】(也布)U U(后,+;咫=J,郵:+1即(加S(_#M)U#).【解析】試題分析:(1)根據(jù)題意要使直線和圓有兩個交點,可轉(zhuǎn)化為直線和圓的方程聯(lián)立方程,即兩解,即直線和圓有-r+18/-135(1-18i+135T徐。15m-27)時,/W0可得方程有2014屆高三數(shù)學(xué)練習(xí)25由閨知L 為,心后,所以 3 熹,因為點Q在直線1上,所以從N2,代入儲 N 可得螳-端=究,庭sir-3由7=及爐3得口附3,即海E(-JIDUQ宕).5H_3考點;L直線和圓的位置關(guān)系;2.韋達定理的運用;3.點與Hl的位置關(guān)系19.已知函數(shù)f(x)=k(logax)2+(logx

9、a)2(logax)3-(logxa)3,g(x)=(3k2)(logax+logxa),(其中a1),設(shè)t=logax+logxa.(i)當(dāng)xW(1,a)=(a,y)時,試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;(n)當(dāng)xw(1,+*)時,若存在x0w(i,+8),使f(%)Ag(x0)成立,試求k的范圍.兩個交點;匕)由題中條件一:-|客OM+ON,即先要求出10Q|2=(10M=+,|ON=0+進而得出-43 3!=魚土受二至,結(jié)合H)中所求的一元二次方程運用韋達定理即可求出加與化的關(guān)系式流若一,最后由點0(附力在直線y=H上,即可將化轉(zhuǎn)化為5k3k=-r這梆阿得

10、出國=、5標(biāo)+陶,注意要注意要由中所求/,3,得到到. .的范圍的范圍. .m5試題解析:將V-此K代入/+卬-4)“二4得則(1+7)/-舐h12=0,(*)由.(-3*-4(1+1)x12)口得P3.所以左的取值范圍是(-國-0)“后+網(wǎng)因為屈杷在直線上,可設(shè)點屈用的坐標(biāo)分別為卜打(盯,既。,則=。+忘,回=。+/引,又困由二Tf。+1316M 網(wǎng)。+上)/(1+d)才,(1+爐)*/依題意;點在圓二內(nèi),則網(wǎng)U,所以3(5+32Q15 加口+1 即于是,門與質(zhì)的函數(shù)關(guān)系為用V15fl?2+1S02014屆高三數(shù)學(xué)練習(xí)2699【答案】(I)當(dāng)k時h(t)在定義域內(nèi)有且僅有一個極值,當(dāng)kw時h

11、(t)在定義域內(nèi)無極值;(n)4417-117-1k,22【解析】試題分析:(1)觀察1。葭#與Log的特點1咕產(chǎn)1%工=1,可得以+Qog=33=.=(1密工+log2以-2,Qog也好+。叫工)3=Qo殳x+1泡力Qog&x+log&4-引,即可得到函數(shù)岫一+、 &必&4,現(xiàn)融函效特征可想到對其求導(dǎo)得/=-至4+2總+3,由二次函數(shù)的圖象不難得出&)=。 在(2,KO)上有解的條件卬(2)0,進而求出歸的范圍;(II)由可得工工2,又由產(chǎn)區(qū))雙與)可得+肥+H-2i0,故可令函數(shù)相&)二-1+總+B-況&32)的最大值為正,對函數(shù)求導(dǎo)

12、令其為0得加)=-3?+2笈+必=0求出上i=兀也=g,由上與2,和g與2的大小關(guān)系對此進行分類討論,并求出各自情況的最大值,由最大值哀壬魏豆求出方的范圍.武題解析;CI)(1ogttxf+Qog,=(1ogax+log)f-2t2-2aQqgiY+(1嗚4=Q%無+1嗚1)【。電1+1嗚鼻)-3=-攵力d)=戶+/3十曳_2k曰2)JW=3?+2七+3,11;1二g分)設(shè)4也是印()=0的兩根,則印:2),.二wa*(i)=3i2+2ki+無,=0得=_1.當(dāng)k2時,m(t)max=m(k)A0得k2;,一,、,一一17-1當(dāng)0kE2時,m(t)max=m(2)A0得一20得上彳.(6分)2

13、014屆高三數(shù)學(xué)練習(xí)27當(dāng)k=0時,mmax=m(2)0不成立,(13分)當(dāng)“0得-6Mk4牛;k._當(dāng)kc-6時,m(t)max=m()A0得k_6;3綜上得:kM47二1或k/7,_,(16分)22考點:1.代數(shù)式的化簡;2.函數(shù)的極值;3.導(dǎo)數(shù)在函數(shù)中的運用. an-3(an3)20.已知a為實數(shù),數(shù)列匕/滿足a=a,當(dāng)n至2時,an=4-an(an一3)(I)當(dāng)a=100時,求數(shù)列an的前100OW口00;(5分)(n)證明:對于數(shù)列匕0,一定存在kwN*,使0ak3;(5分)an20a(出)令bn=an當(dāng)2a3時,求證:Zbi3時,圖-。-1二一3成等差數(shù)列,當(dāng)即11三3時,即+即_i=4,可見由白=】00得出前34項就菱差額,35項以辰奇數(shù)項為3,偶數(shù)項為】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論