版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、oYX標準方 程范 圍對稱性頂點焦 點對稱軸離心率準 線關(guān)于X,Y軸,原點對稱(a,0),(0,b)(c,0)A1A2 ; B1B2ace cax2|x|a,|y|b12222byaxF1F2A1A2B2B1復(fù)習(xí) 橢圓的圖像與性質(zhì)cax2cax2上述性質(zhì)其研究方法各是什么?雙曲線的標準方程形式一:形式一: (焦點在(焦點在x軸上,(軸上,(-c,0)、)、 (c,0)) 0, 0( 12222babyax1F2F 形式二:形式二:(焦點在(焦點在y軸上,(軸上,(0,-c)、()、(0,c) 其中其中) 0, 0( 12222babxay1F2F222cba復(fù)復(fù) 習(xí)習(xí) YXF1F2A1A2B1
2、B212222byax焦點在x軸上的雙曲線圖像 2、對稱性、對稱性 一、研究雙曲線一、研究雙曲線 的簡單幾何性的簡單幾何性質(zhì)質(zhì)) 0, 0( 12222babyax1、范圍、范圍axaxaxax, 12222即關(guān)于關(guān)于x軸、軸、y軸和原點都是對稱軸和原點都是對稱。x軸、軸、y軸是雙曲線的對稱軸,原點是對稱中心,軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的又叫做雙曲線的中心中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)課堂新授課堂新授 3、頂點、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的)雙曲線與對稱軸的交點,叫做雙曲線的頂點頂點xyo-b1B2Bb1A2A-aa)0
3、 ,()0 ,(21aAaA、頂點是如圖,線段如圖,線段 叫做雙曲線叫做雙曲線的實軸,它的長為的實軸,它的長為2a,a叫做叫做實半軸長;線段實半軸長;線段 叫做雙叫做雙曲線的虛軸,它的長為曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長叫做雙曲線的虛半軸長2A1A2B1B(2)實軸與虛軸等長的雙曲線實軸與虛軸等長的雙曲線叫叫等軸雙曲線等軸雙曲線(3))0(22mmyxM(x,y)4、漸近線、漸近線1A2A1B2BN(x,y)Q:的位置關(guān)系它與xaby :的位置的變化趨勢它與xaby 的下方在xaby 慢慢靠近慢慢靠近xyoxaby xaby ab)0(22xaxaby分的方程為雙曲線在第一象限
4、內(nèi)部xabybabyax的漸近線為雙曲線)0,0(12222(1)的漸近線為等軸雙曲線)0(22mmyx(2)xy 利用漸近線可以較準確的利用漸近線可以較準確的畫出雙曲線的草圖畫出雙曲線的草圖(3)5、離心率、離心率雙曲線的叫做的比雙曲線的焦距與實軸長,ace 離心率。ca0e 1e是表示雙曲線開口大小的一個量,e越大開口越大(1)定義:)定義:(2)e e的范圍的范圍:(3)e e的含義:的含義:11)(2222eacaacab也增大增大且時,當abeabe,), 0(), 1 (的夾角增大增大時,漸近線與實軸eace 222bac二四個參數(shù)中,知二可求、在ecba(4)等軸雙曲線的離心率等
5、軸雙曲線的離心率e= ?2( 5 )的雙曲線是等軸雙曲線離心率2eA1A2B1B2abc222abcx0y幾何意義 雙曲線標準方程:YX12222byax0byax雙曲線性質(zhì):1、范圍: xa或x-a2、對稱性:關(guān)于x軸,y軸,原點對稱。3、頂點A1(-a,0),A2(a,0)4、軸:實軸 A1A2 虛軸 B1B2A1A2B1B25、漸近線方程:6、離心率:e=acXYF1F2OB1B2A2A112222bxay焦點在y軸上的雙曲線圖像 雙曲線標準方程:YX12222bxay0byax雙曲線性質(zhì):1、范圍:ya或y-a2、對稱性:關(guān)于x軸,y軸,原點對稱。3、頂點B1(0,-a),B2(0,a
6、)4、軸:實軸 B1B2 ; 虛軸 A1A2A1A2B1B25、漸近線方程:6、離心率:e=c/aF2F2o如何記憶雙曲線的漸進線方程?小小 結(jié)結(jié)xyoax或ax ay ay或)0 ,( a), 0(axaby xbay ace)(222bac其中關(guān)于關(guān)于坐標坐標軸和軸和原點原點都對都對稱稱性性質(zhì)質(zhì)雙曲線雙曲線) 0, 0(12222babyax) 0, 0(12222babxay范圍范圍對稱對稱 性性 頂點頂點 漸近漸近 線線離心離心 率率圖象圖象 xyo例例1 :求雙曲線求雙曲線的實半軸長的實半軸長,虛半軸長虛半軸長,焦點坐標焦點坐標,離心率離心率.漸近線方程。漸近線方程。解:把方程化為標
7、準方程解:把方程化為標準方程可得可得:實半軸長實半軸長a=4虛半軸長虛半軸長b=3半焦距半焦距c=焦點坐標是焦點坐標是(0,-5),(0,5)離心率離心率:漸近線方程漸近線方程:14416922 xy1342222 xy53422 45 acexy34例題講解例題講解 1 1、填表、填表標 準 方程32822 yx81922yx422yx1254922yx2a2b范 圍頂 點焦 點離 心 率漸 進 線|x|0 ,240 , 6223exy424618|x|3(3,0)0 ,10310ey=3x44|y|2(0,2)2e22, 0 xy1014|y|5(0,5)74, 0 574exy75282
8、412 byax222( a b 0)12222 byax( a 0 b0) 222 ba(a 0 b0) c222 ba(a b0) c橢橢 圓圓雙曲線雙曲線方程方程a b c關(guān)系關(guān)系圖象圖象yXF10F2MXY0F1F2 p小小 結(jié)結(jié)漸近線漸近線離心率離心率頂點頂點對稱性對稱性范圍范圍 準線準線|x| a,|y|b|x| a,y R對稱軸:對稱軸:x軸,軸,y軸軸 對稱中心:原點對稱中心:原點對稱軸:對稱軸:x軸,軸,y軸軸 對稱中心:原點對稱中心:原點(-a,0) (a,0) (0,b) (0,-b)長軸:長軸:2a 短軸:短軸:2b(-a,0) (a,0)實軸:實軸:2a虛軸:虛軸:2be =ac( 0e 1 )ace=(e1)無無 y = abxcax2cax2小結(jié): 本節(jié)課討論了雙曲線的簡單幾何性質(zhì):范圍,對稱性,頂點,離心率,漸近線,請同學(xué)們熟練掌握。作業(yè) 113 ,1例例2:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線叫原雙曲線的共軛雙曲線,求證: (1)雙曲線和它的共軛雙曲線有共同的漸近線; (2)雙曲線和它的共軛雙曲線的四個焦點在同一個圓上.YXA1A2B1B2F1F2oF2F1證明:(1)設(shè)已知雙曲線的方程是:12222byax則它的共軛雙曲線方程是:12222axby漸近線為:0byax漸近線為:0axby可化為:0byax故雙曲線和它的共軛雙曲線有共同
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 焦化廠料棚衛(wèi)生標準制度
- 樓道衛(wèi)生值日制度
- 豬場內(nèi)環(huán)境衛(wèi)生管理制度
- 洗衣房內(nèi)務(wù)衛(wèi)生管理制度
- 歐洲近代衛(wèi)生制度
- 鄉(xiāng)政府衛(wèi)生防疫管理制度
- 衛(wèi)生室管理制度
- 衛(wèi)生院述職測評制度
- 瀝青站環(huán)境衛(wèi)生制度
- 浴足店衛(wèi)生管理制度
- 八年級地理《中國氣候的主要特征》單元核心課教學(xué)設(shè)計
- 長護險人員管理培訓(xùn)制度
- 2026河南大學(xué)附屬中學(xué)招聘77人備考題庫附答案
- 網(wǎng)絡(luò)安全運維與管理規(guī)范(標準版)
- 液冷系統(tǒng)防漏液和漏液檢測設(shè)計研究報告
- 《國家十五五規(guī)劃綱要》全文
- 2025屆上海市高考英語考綱詞匯表
- 知識圖譜構(gòu)建實踐
- 部編版五年級語文上冊快樂讀書吧測試題及答案
- 衛(wèi)星傳輸專業(yè)試題題庫及答案
- 細胞治療GMP生產(chǎn)中的工藝控制
評論
0/150
提交評論