付費(fèi)下載
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、四川省廣安市鄰水縣興仁職業(yè)中學(xué)2022-2023學(xué)年高三數(shù)學(xué)文月考試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 已知是等差數(shù)列,其前項(xiàng)和為,若,則=( )A.15 B.14 C.13 D.12參考答案:B2. 函數(shù)是奇函數(shù)的充要條件是 ( )A. B. C. D. 參考答案:B3. 一個(gè)幾何體的三視圖如圖所示,其中的長(zhǎng)度單位為cm,則該幾何體的體積為( )cm3。 A18 B48 C45 D54參考答案:4. 已知雙曲線C:=1(a0,b0)的左焦點(diǎn)為F(c,0),M、N在雙曲線C上,O是坐標(biāo)原點(diǎn),若四邊形OFMN為平行
2、四邊形,且四邊形OFMN的面積為cb,則雙曲線C的離心率為()AB2C2D2參考答案:D【考點(diǎn)】雙曲線的簡(jiǎn)單性質(zhì)【分析】設(shè)M(x0,y0),y00,由四邊形OFMN為平行四邊形,四邊形OFMN的面積為cb,由x0=,丨y0丨=b,代入雙曲線方程,由離心率公式,即可求得雙曲線C的離心率【解答】解:雙曲線C:=1(a0,b0)焦點(diǎn)在x軸上,設(shè)M(x0,y0),y00,由四邊形OFMN為平行四邊形,x0=,四邊形OFMN的面積為cb,丨y0丨c=cb,即丨y0丨=b,M(, b),代入雙曲線可得:=1,整理得:,由e=,e2=12,由e1,解得:e=2,故選D【點(diǎn)評(píng)】本題考查雙曲線的標(biāo)準(zhǔn)方程,考查雙
3、曲線的離心率公式,考查計(jì)算能力,屬于中檔題5. 輸入時(shí),運(yùn)行如圖所示的程序,輸出的值為A4 B5 C7 D9參考答案:C6. 雙曲線x2y2=4的兩條漸進(jìn)線和直線x=2圍成一個(gè)三角形區(qū)域(含邊界),則該區(qū)域可表示為 A B C D參考答案:答案:B 7. 已知命題甲:,命題乙:,則甲是乙的【 】A、充要條件B、既不充分也不必要條件C、充分不必要條件D、必要不充分條件參考答案:D8. 已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,1)若點(diǎn)M(x,y)為平面區(qū)域上的一個(gè)動(dòng)點(diǎn),則的取值范圍是A.-1.0 B.0.1 C.0.2 D.-1.2參考答案:C本題考查了向量數(shù)量積的運(yùn)算和簡(jiǎn)單的線性規(guī)劃知識(shí),難度中偏低。而畫
4、出其表示的平面區(qū)域,可知為以(0,2),(1,2)(1,1)為頂點(diǎn)的三角形,把三點(diǎn)值代入x+y可得,最大為2,最小為0, 故答案為C ,本題也可作x+y=0的平行線求得9. 下列4個(gè)命題:(1)若,則;(2) “”是“對(duì)任意的實(shí)數(shù),成立”的充要條件;(3)命題“,”的否定是:“,”;(4)函數(shù) 的值域?yàn)?其中正確的命題個(gè)數(shù)是( ) A、1 B、2 C、3 D、0參考答案:A10. 已知不等式的解集為(2,1),則二項(xiàng)式展開式的常數(shù)項(xiàng)是( )A15 B15 C5 D5參考答案:B不等式的解集為, 二項(xiàng)式的展開式式的通項(xiàng)公式為 令 ,求得 ,可得展開式的常數(shù)項(xiàng)是 故選B二、 填空題:本大題共7小題
5、,每小題4分,共28分11. 的三內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,設(shè)向量,若,則角C的大小為 參考答案:12. 若展開式的二項(xiàng)式系數(shù)之和為64,則展開式的常數(shù)項(xiàng)為 .參考答案:答案:15 13. 若m1,則函數(shù)f(m)=(1)dx的最小值為參考答案:1【考點(diǎn)】定積分【分析】根據(jù)微積分基本定理和基本不等式,計(jì)算即可【解答】解:f(m)=(1)dx=(x+|)=m+52=45=1,當(dāng)且僅當(dāng)m=2時(shí)等號(hào)成立故答案為:114. 在極坐標(biāo)系中,直線的方程是,以極點(diǎn)為原點(diǎn),以極軸為x軸的正半軸建立直角坐標(biāo)系,在直角坐標(biāo)系中,直線的方程是.如果直線與垂直,則常數(shù)_參考答案:-3略15. 展開式中的
6、系數(shù)為 參考答案:210 16. 若,則的最大值為. 參考答案:【知識(shí)點(diǎn)】二倍角公式;基本不等式C6 E6 解析:因?yàn)?,所以,所以原式,故答案為?!舅悸伏c(diǎn)撥】利用二倍角公式把原函數(shù)化簡(jiǎn),再利用基本不等式即可。17. 直線與圓相交于兩點(diǎn),若,則 參考答案:三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. 已知函數(shù).() 若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;() 設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)p的取值范圍參考答案:已知函數(shù)() ,即,對(duì)恒成立,設(shè),在上增,減,則,即4分() 設(shè)函數(shù),則原問題在上至少存在一點(diǎn),使得5分,則在增,
7、舍;7分, ,則,舍;9分,則在增,整理得11分綜上,12分19. (本小題滿分12分)已知雙曲線的右頂點(diǎn)為A(2,0),右焦點(diǎn)為F、O為坐標(biāo)原點(diǎn),點(diǎn)F,A到漸近線的距離之比為,過點(diǎn)B(0,2)且斜率為k的直線l與該雙曲線交于不同的兩點(diǎn)P,Q。 (I)求雙曲線的方程及k的取值范圍; (II)是否存在常數(shù)k,使得向量垂直?如果存在,求k的值;如果不存在,請(qǐng)說明理由。參考答案:略20. 橢圓C:過點(diǎn)P(,1)且離心率為,F(xiàn)為橢圓的右焦點(diǎn),過F的直線交橢圓C于M,N兩點(diǎn),定點(diǎn)A(4,0)()求橢圓C的方程;()若AMN面積為3,求直線MN的方程參考答案:【考點(diǎn)】KL:直線與橢圓的位置關(guān)系【分析】(1
8、)由題意可得: =1, =,又a2=b2+c2,聯(lián)立解得:a2,b2,c可得橢圓C的方程(2)F(2,0)若MNx軸,把x=2代入橢圓方程可得: +=1,解得y則SAMN3,舍去若MN與x軸重合時(shí)不符合題意,舍去因此可設(shè)直線MN的方程為:my=x2把x=my+2代入橢圓方程可得:(m2+3)y2+4my2=0可得|y1y2|=利用SAMN=3即可得出【解答】解:(1)由題意可得: =1, =,又a2=b2+c2,聯(lián)立解得:a2=6,b2=2,c=2橢圓C的方程為:(2)F(2,0)若MNx軸,把x=2代入橢圓方程可得: +=1,解得y=則SAMN=23,舍去若MN與x軸重合時(shí)不符合題意,舍去因
9、此可設(shè)直線MN的方程為:my=x2把x=my+2代入橢圓方程可得:(m2+3)y2+4my2=0y1+y2=,y1?y2=,|y1y2|=則SAMN=3=3,解得m=1直線MN的方程為:y=(x2)21. 在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(其中為參數(shù)),曲線C2:(x1)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系()求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;()若射線=(0)與曲線C1,C2分別交于A,B兩點(diǎn),求|AB|參考答案:【考點(diǎn)】Q4:簡(jiǎn)單曲線的極坐標(biāo)方程;QH:參數(shù)方程化成普通方程【分析】()由sin2+cos2=1,能求出曲線C1的普通方程,由x=
10、cos,y=sin,能求出曲線C2的極坐標(biāo)方程()依題意設(shè)A(),B(),將(0)代入曲線C1的極坐標(biāo)方程,求出1=3,將(0)代入曲線C2的極坐標(biāo)方程求出,由此能求出|AB|【解答】解:()曲線C1的參數(shù)方程為(其中為參數(shù)),曲線C1的普通方程為x2+(y2)2=7曲線C2:(x1)2+y2=1,把x=cos,y=sin代入(x1)2+y2=1,得到曲線C2的極坐標(biāo)方程(cos1)2+(sin)2=1,化簡(jiǎn),得=2cos()依題意設(shè)A(),B(),曲線C1的極坐標(biāo)方程為24sin3=0,將(0)代入曲線C1的極坐標(biāo)方程,得223=0,解得1=3,同理,將(0)代入曲線C2的極坐標(biāo)方程,得,|
11、AB|=|12|=3【點(diǎn)評(píng)】本題考查參數(shù)方程、極坐標(biāo)方程等基礎(chǔ)知識(shí),考查考生運(yùn)算求解能力、考查化歸與轉(zhuǎn)化思想、考查分析問題、解決問題能力22. 在直角坐標(biāo)系xOy中,已知圓C:(為參數(shù)),點(diǎn)P在直線l:x+y4=0上,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系( I)求圓C和直線l的極坐標(biāo)方程;( II)射線OP交圓C于R,點(diǎn)Q在射線OP上,且滿足|OP|2=|OR|?|OQ|,求Q點(diǎn)軌跡的極坐標(biāo)方程參考答案:【考點(diǎn)】QH:參數(shù)方程化成普通方程;Q4:簡(jiǎn)單曲線的極坐標(biāo)方程【分析】()圓C:(為參數(shù)),可得直角坐標(biāo)方程:x2+y2=4,利用互化公式可得圓C的極坐標(biāo)方程點(diǎn)P在直線l:x+y4=0上,利用互化公式可得直線l的極坐標(biāo)方程(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 拆扒施工合同范本
- 商場(chǎng)導(dǎo)視合同范本
- 擔(dān)保合同補(bǔ)充協(xié)議
- 墻繪施工合同協(xié)議
- 擬定的管理協(xié)議書
- 排他協(xié)議合同范本
- 攪拌供料合同范本
- 旅游電子合同范本
- 掛車協(xié)議出售合同
- 2025年智能物流倉儲(chǔ)系統(tǒng)的研發(fā)可行性研究報(bào)告
- 電氣焊安全培訓(xùn)課件
- 客戶開發(fā)與客戶維護(hù)課件
- STM32理論課件教學(xué)課件
- 交通運(yùn)輸行業(yè)數(shù)據(jù)集建設(shè)實(shí)施方案
- 測(cè)繪安全培訓(xùn)課件圖片
- 民族團(tuán)結(jié)教學(xué)課件
- 嚴(yán)格電話使用管理辦法
- (2025年標(biāo)準(zhǔn))簡(jiǎn)單砌石墻協(xié)議書
- (2025年標(biāo)準(zhǔn))鐵路實(shí)習(xí)協(xié)議書
- 與4s店二手車合作合同協(xié)議
- 《中華民族共同體概論》考試復(fù)習(xí)題庫(含答案)
評(píng)論
0/150
提交評(píng)論