版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
24.2.1
點(diǎn)和圓的位置關(guān)系24.2.1點(diǎn)和圓的位置關(guān)系
我國射擊運(yùn)動(dòng)員在奧運(yùn)會(huì)上獲金牌,為我國贏得榮譽(yù).如圖是射擊靶的示意圖,它是由許多同心圓(圓心相同,半徑不相同)構(gòu)成的,你知道擊中靶上不同位置的成績是如何計(jì)算的嗎?觀察解決這個(gè)問題要研究點(diǎn)和圓的位置關(guān)系.我國射擊運(yùn)動(dòng)員在奧運(yùn)會(huì)上獲金牌,為我國贏得榮譽(yù)r問題2:設(shè)⊙O半徑為r,說出點(diǎn)A,點(diǎn)B,點(diǎn)C與圓心O的距離與半徑的關(guān)系:·COABOC>r.問題1:觀察圖中點(diǎn)A,點(diǎn)B,點(diǎn)C與圓的位置關(guān)系?點(diǎn)C在圓外.點(diǎn)A在圓內(nèi),點(diǎn)B在圓上,OA<r,OB=r,r問題2:設(shè)⊙O半徑為r,說出點(diǎn)A,點(diǎn)B,點(diǎn)C與圓心O設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:點(diǎn)P在圓上d=r;點(diǎn)P在圓外d>r.點(diǎn)P在圓內(nèi)d<r
;
符號(hào)讀作“等價(jià)于”,它表示從符號(hào)的左端可以得到右端從右端也可以得到左端.r·OA問題3:反過來,已知點(diǎn)到圓心的距離和圓的半徑的數(shù)量關(guān)系,能否判斷點(diǎn)和圓的位置關(guān)系?PPP設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:點(diǎn)P在射擊靶圖上,有一組以靶心為圓心的大小不同的圓,他們把靶圖由內(nèi)到外分成幾個(gè)區(qū)域,這些區(qū)域用由高到底的環(huán)數(shù)來表示,射擊成績用彈著點(diǎn)位置對(duì)應(yīng)的環(huán)數(shù)來表示.彈著點(diǎn)與靶心的距離決定了它在哪個(gè)圓內(nèi),彈著點(diǎn)離靶心越近,它所在的區(qū)域就越靠內(nèi),對(duì)應(yīng)的環(huán)數(shù)也就越高,射擊的成績越好.你知道擊中靶上不同位置的成績是如何計(jì)算的嗎?射擊靶圖上,有一組以靶心為圓心的大小不同的圓,他們把靶圖由內(nèi)設(shè)⊙O的半徑為r,點(diǎn)到圓心的距離為d。則點(diǎn)和圓的位置關(guān)系點(diǎn)在圓內(nèi)d﹤r點(diǎn)在圓上點(diǎn)在圓外d=rd>r練習(xí):1.已知圓的半徑等于5厘米,點(diǎn)到圓心的距離是:A、8厘米B、4厘米C、5厘米。請(qǐng)你分別說出點(diǎn)與圓的位置關(guān)系?!瘛瘛瘛馩設(shè)⊙O的半徑為r,點(diǎn)到圓心的距離為d。則點(diǎn)和圓的位置關(guān)系點(diǎn)在2.如圖已知矩形ABCD的邊AB=3厘米,AD=4厘米ADCB(1)以點(diǎn)A為圓心,3厘米為半徑作圓A,則點(diǎn)B、C、D與圓A的位置關(guān)系如何?(B在圓上,D在圓外,C在圓外)(2)以點(diǎn)A為圓心,4厘米為半徑作圓A,則點(diǎn)B、C、D與圓A的位置關(guān)系如何?(B在圓內(nèi),D在圓上,C在圓外)(3)以點(diǎn)A為圓心,5厘米為半徑作圓A,則點(diǎn)B、C、D與圓A的位置關(guān)系如何?(B在圓內(nèi),D在圓內(nèi),C在圓上)2.如圖已知矩形ABCD的邊AB=3厘米,AD=4厘米ADC●A●A●B過一點(diǎn)可作幾條直線?過兩點(diǎn)可以作幾條直線?過三點(diǎn)呢?過兩點(diǎn)有且只有一條直線(直線公理)(“有且只有”就是“確定”的意思)經(jīng)過一點(diǎn)可以作無數(shù)條直線;回憶思考:●A●A●B過一點(diǎn)可作幾條直線?過兩點(diǎn)可以作幾條直線?過三點(diǎn)過三點(diǎn)1、若三點(diǎn)共線,則過這三點(diǎn)只能作一條直線.ABC2、若三點(diǎn)不共線,則過這三點(diǎn)不能作直線,但過任意其中兩點(diǎn)一共可作三條直線.ABC直線公理:兩點(diǎn)確定一條直線過三點(diǎn)1、若三點(diǎn)共線,則過這三點(diǎn)只能作一條直線.ABC2、若
對(duì)于一個(gè)圓來說,過幾個(gè)點(diǎn)能作一個(gè)圓,并且只能作一個(gè)圓?類比探究:對(duì)于一個(gè)圓來說,過幾個(gè)點(diǎn)能作一個(gè)圓,并且只能作一個(gè)圓?類過一點(diǎn)能作幾個(gè)圓?無數(shù)個(gè)A過A點(diǎn)的圓的圓心有何特點(diǎn)?平面上除A點(diǎn)外的任意一點(diǎn)過一點(diǎn)能作幾個(gè)圓?無數(shù)個(gè)A過A點(diǎn)的圓的圓心有何特點(diǎn)?平面上除過兩點(diǎn)能作幾個(gè)圓?AB過A、B兩點(diǎn)的圓的圓心有何特點(diǎn)?經(jīng)過兩點(diǎn)A,B的圓的圓心在線段AB的垂直平分線上.以線段AB的垂直平分線上的任意一點(diǎn)為圓心,這點(diǎn)到A或B的距離為半徑作圓.●O●O過兩點(diǎn)能作幾個(gè)圓?AB過A、B兩點(diǎn)的圓的圓心有何特點(diǎn)?經(jīng)過兩ABC1、連結(jié)AB,作線段AB的垂直平分線DE,ODEGF2、連結(jié)BC,作線段BC的垂直平分線FG,交DE于點(diǎn)O,3、以O(shè)為圓心,OB為半徑作圓,作法:⊙O就是所求作的圓已知:不在同一直線上的三點(diǎn)A、B、C求作:⊙O,使它經(jīng)過A、B、C1、三點(diǎn)不共線ABC1、連結(jié)AB,作線段AB的垂直平分線DE,ODEGF2請(qǐng)你證明你作的圓符合要求證明:∵點(diǎn)O在AB的垂直平分線上,∴OA=OB.同理,OB=OC.∴OA=OB=OC.∴點(diǎn)A,B,C在以O(shè)為圓心,OA長為半徑的圓上.∴⊙O就是所求作的圓,在上面的作圖過程中.∵直線DE和FG只有一個(gè)交點(diǎn)O,并且點(diǎn)O到A,B,C三個(gè)點(diǎn)的距離相等,∴經(jīng)過點(diǎn)A,B,C三點(diǎn)可以作一個(gè)圓,并且只能作一個(gè)圓.ABCODEGF請(qǐng)你證明你作的圓符合要求證明:∵點(diǎn)O在AB的垂直平分線上,A定理:不在同一直線上的三點(diǎn)確定一個(gè)圓OABC我們的收獲定理:OABC我們的收獲O1.由定理可知:經(jīng)過三角形三個(gè)頂點(diǎn)可以作一個(gè)圓.并且只能作一個(gè)圓.2.經(jīng)過三角形各頂點(diǎn)的圓叫做三角形的外接圓.3.三角形外接圓的圓心叫做三角形的外心,這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形.ABCO1.由定理可知:經(jīng)過三角形三個(gè)頂點(diǎn)可以作一個(gè)圓.并且只能作圓的內(nèi)接三角形三角形的外接圓三角形的外心ABCO
外心1.三邊垂直平分線的交點(diǎn)2.到三個(gè)頂點(diǎn)距離相等圓的內(nèi)接三角形三角形的外接圓三角形的外心ABCO外心OABCABCO直角三角形外心是斜邊AB的中點(diǎn)鈍角三角形外心在△ABC的外面三角形的外心是否一定在三角形的內(nèi)部?OABCABCO直角三角形外心是斜邊AB的中點(diǎn)鈍角三角形外心2.經(jīng)過同一條直線三個(gè)點(diǎn)能作出一個(gè)圓嗎??思考l1l2ABCP如圖,假設(shè)過同一條直線l上三點(diǎn)A、B、C可以作一個(gè)圓,設(shè)這個(gè)圓的圓心為P,那么點(diǎn)P既在線段AB的垂直平分線l1上,又在線段BC的垂直平分線l2上,即點(diǎn)P為l1與l2的交點(diǎn),而l1⊥l,l2⊥l這與我們以前學(xué)過的“過一點(diǎn)有且只有一條直線與已知直線垂直”相矛盾,所以過同一條直線上的三點(diǎn)不能作圓.2.經(jīng)過同一條直線三個(gè)點(diǎn)能作出一個(gè)圓嗎??思考l1l2ABC先假設(shè)命題的結(jié)論不成立,然后由此經(jīng)過推理得出矛盾(常與公理、定理、定義或已知條件相矛盾),由矛盾判定假設(shè)不正確,從而得到原命題成立,這種方法叫做反證法.什么叫反證法?先假設(shè)命題的結(jié)論不成立,然后由此經(jīng)過推理得出矛盾(常與公理、一、判斷題:1、過三點(diǎn)一定可以作圓 ()2、三角形有且只有一個(gè)外接圓()3、任意一個(gè)圓有一個(gè)內(nèi)接三角形,并且只有一個(gè)內(nèi)接三角形 ()4、三角形的外心就是這個(gè)三角形任意兩邊垂直平分線的交點(diǎn) ()5、三角形的外心到三邊的距離相等 ()錯(cuò)對(duì)錯(cuò)對(duì)錯(cuò)一、判斷題:錯(cuò)對(duì)錯(cuò)對(duì)錯(cuò)二、思考:如圖,CD所在的直線垂直平分線段AB,怎樣用這樣的工具找到圓形工件的圓心.DABCO∵A、B兩點(diǎn)在圓上,所以圓心必與A、B兩點(diǎn)的距離相等,又∵和一條線段的兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上,∴圓心在CD所在的直線上,因此可以做任意兩條直徑,它們的交點(diǎn)為圓心.二、思考:如圖,CD所在的直線垂直平分線段AB,怎樣用這樣
三、如何解決“破鏡重圓”的問題:ABCO圓心一定在弦的垂直平分線上三、如何解決“破鏡重圓”的問題:ABCO圓心一定在1、思考:任意四個(gè)點(diǎn)是不是可以作一個(gè)圓?請(qǐng)舉例說明.
不一定1).四點(diǎn)在一條直線上不能作圓。3).四點(diǎn)中任意三點(diǎn)不在一條直線可能作圓也可能作不出一個(gè)圓.ABCDABCDABCDABCD2).三點(diǎn)在同一直線上,另一點(diǎn)不在這條直線上不能作圓;1、思考:任意四個(gè)點(diǎn)是不是可以作一個(gè)圓?請(qǐng)舉例說明.不一2、為美化校園,學(xué)校要把一塊三角形空地?cái)U(kuò)建成一個(gè)圓形噴水池,在三角形三個(gè)頂點(diǎn)處各有一棵名貴花樹(A、B、C),若不動(dòng)花樹,還要建一個(gè)最大的圓形噴水池,請(qǐng)?jiān)O(shè)計(jì)你的實(shí)施方案。CBA2、為美化校園,學(xué)校要把一塊三角形空地?cái)U(kuò)建成一個(gè)圓形噴水池,回顧本節(jié)課的學(xué)習(xí)歷程,你有哪些收獲(知識(shí)、方法)?還有什么疑問?回顧本節(jié)課的學(xué)習(xí)歷程,我學(xué)會(huì)了什么?過兩點(diǎn)可以作無數(shù)個(gè)圓.圓心在以已知兩點(diǎn)為端點(diǎn)的線段的垂直平分線上.實(shí)際問題直線公理過一點(diǎn)可以作無數(shù)個(gè)圓過三點(diǎn)過不在同一條直線上的三點(diǎn)確定一個(gè)圓過在同一直線上的三點(diǎn)不能作圓外心、三角形外接圓、圓的內(nèi)接三角形實(shí)際問題作圓引入解決類比我學(xué)會(huì)了什么?過兩點(diǎn)可以作無數(shù)個(gè)圓.圓心在以已知兩點(diǎn)為端點(diǎn)
你長著一對(duì)翅膀。堅(jiān)韌地飛吧,不要為風(fēng)雨所折服;誠摯地飛吧,不要為香甜的蜜汁所陶醉。朝著明確的目標(biāo),飛向美好的人生。結(jié)束寄語祝同學(xué)們學(xué)習(xí)進(jìn)步,學(xué)有所成!結(jié)束寄語祝同學(xué)們學(xué)習(xí)進(jìn)步,學(xué)有所成!24.2.1
點(diǎn)和圓的位置關(guān)系24.2.1點(diǎn)和圓的位置關(guān)系
我國射擊運(yùn)動(dòng)員在奧運(yùn)會(huì)上獲金牌,為我國贏得榮譽(yù).如圖是射擊靶的示意圖,它是由許多同心圓(圓心相同,半徑不相同)構(gòu)成的,你知道擊中靶上不同位置的成績是如何計(jì)算的嗎?觀察解決這個(gè)問題要研究點(diǎn)和圓的位置關(guān)系.我國射擊運(yùn)動(dòng)員在奧運(yùn)會(huì)上獲金牌,為我國贏得榮譽(yù)r問題2:設(shè)⊙O半徑為r,說出點(diǎn)A,點(diǎn)B,點(diǎn)C與圓心O的距離與半徑的關(guān)系:·COABOC>r.問題1:觀察圖中點(diǎn)A,點(diǎn)B,點(diǎn)C與圓的位置關(guān)系?點(diǎn)C在圓外.點(diǎn)A在圓內(nèi),點(diǎn)B在圓上,OA<r,OB=r,r問題2:設(shè)⊙O半徑為r,說出點(diǎn)A,點(diǎn)B,點(diǎn)C與圓心O設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:點(diǎn)P在圓上d=r;點(diǎn)P在圓外d>r.點(diǎn)P在圓內(nèi)d<r
;
符號(hào)讀作“等價(jià)于”,它表示從符號(hào)的左端可以得到右端從右端也可以得到左端.r·OA問題3:反過來,已知點(diǎn)到圓心的距離和圓的半徑的數(shù)量關(guān)系,能否判斷點(diǎn)和圓的位置關(guān)系?PPP設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:點(diǎn)P在射擊靶圖上,有一組以靶心為圓心的大小不同的圓,他們把靶圖由內(nèi)到外分成幾個(gè)區(qū)域,這些區(qū)域用由高到底的環(huán)數(shù)來表示,射擊成績用彈著點(diǎn)位置對(duì)應(yīng)的環(huán)數(shù)來表示.彈著點(diǎn)與靶心的距離決定了它在哪個(gè)圓內(nèi),彈著點(diǎn)離靶心越近,它所在的區(qū)域就越靠內(nèi),對(duì)應(yīng)的環(huán)數(shù)也就越高,射擊的成績越好.你知道擊中靶上不同位置的成績是如何計(jì)算的嗎?射擊靶圖上,有一組以靶心為圓心的大小不同的圓,他們把靶圖由內(nèi)設(shè)⊙O的半徑為r,點(diǎn)到圓心的距離為d。則點(diǎn)和圓的位置關(guān)系點(diǎn)在圓內(nèi)d﹤r點(diǎn)在圓上點(diǎn)在圓外d=rd>r練習(xí):1.已知圓的半徑等于5厘米,點(diǎn)到圓心的距離是:A、8厘米B、4厘米C、5厘米。請(qǐng)你分別說出點(diǎn)與圓的位置關(guān)系。●●●●O設(shè)⊙O的半徑為r,點(diǎn)到圓心的距離為d。則點(diǎn)和圓的位置關(guān)系點(diǎn)在2.如圖已知矩形ABCD的邊AB=3厘米,AD=4厘米ADCB(1)以點(diǎn)A為圓心,3厘米為半徑作圓A,則點(diǎn)B、C、D與圓A的位置關(guān)系如何?(B在圓上,D在圓外,C在圓外)(2)以點(diǎn)A為圓心,4厘米為半徑作圓A,則點(diǎn)B、C、D與圓A的位置關(guān)系如何?(B在圓內(nèi),D在圓上,C在圓外)(3)以點(diǎn)A為圓心,5厘米為半徑作圓A,則點(diǎn)B、C、D與圓A的位置關(guān)系如何?(B在圓內(nèi),D在圓內(nèi),C在圓上)2.如圖已知矩形ABCD的邊AB=3厘米,AD=4厘米ADC●A●A●B過一點(diǎn)可作幾條直線?過兩點(diǎn)可以作幾條直線?過三點(diǎn)呢?過兩點(diǎn)有且只有一條直線(直線公理)(“有且只有”就是“確定”的意思)經(jīng)過一點(diǎn)可以作無數(shù)條直線;回憶思考:●A●A●B過一點(diǎn)可作幾條直線?過兩點(diǎn)可以作幾條直線?過三點(diǎn)過三點(diǎn)1、若三點(diǎn)共線,則過這三點(diǎn)只能作一條直線.ABC2、若三點(diǎn)不共線,則過這三點(diǎn)不能作直線,但過任意其中兩點(diǎn)一共可作三條直線.ABC直線公理:兩點(diǎn)確定一條直線過三點(diǎn)1、若三點(diǎn)共線,則過這三點(diǎn)只能作一條直線.ABC2、若
對(duì)于一個(gè)圓來說,過幾個(gè)點(diǎn)能作一個(gè)圓,并且只能作一個(gè)圓?類比探究:對(duì)于一個(gè)圓來說,過幾個(gè)點(diǎn)能作一個(gè)圓,并且只能作一個(gè)圓?類過一點(diǎn)能作幾個(gè)圓?無數(shù)個(gè)A過A點(diǎn)的圓的圓心有何特點(diǎn)?平面上除A點(diǎn)外的任意一點(diǎn)過一點(diǎn)能作幾個(gè)圓?無數(shù)個(gè)A過A點(diǎn)的圓的圓心有何特點(diǎn)?平面上除過兩點(diǎn)能作幾個(gè)圓?AB過A、B兩點(diǎn)的圓的圓心有何特點(diǎn)?經(jīng)過兩點(diǎn)A,B的圓的圓心在線段AB的垂直平分線上.以線段AB的垂直平分線上的任意一點(diǎn)為圓心,這點(diǎn)到A或B的距離為半徑作圓.●O●O過兩點(diǎn)能作幾個(gè)圓?AB過A、B兩點(diǎn)的圓的圓心有何特點(diǎn)?經(jīng)過兩ABC1、連結(jié)AB,作線段AB的垂直平分線DE,ODEGF2、連結(jié)BC,作線段BC的垂直平分線FG,交DE于點(diǎn)O,3、以O(shè)為圓心,OB為半徑作圓,作法:⊙O就是所求作的圓已知:不在同一直線上的三點(diǎn)A、B、C求作:⊙O,使它經(jīng)過A、B、C1、三點(diǎn)不共線ABC1、連結(jié)AB,作線段AB的垂直平分線DE,ODEGF2請(qǐng)你證明你作的圓符合要求證明:∵點(diǎn)O在AB的垂直平分線上,∴OA=OB.同理,OB=OC.∴OA=OB=OC.∴點(diǎn)A,B,C在以O(shè)為圓心,OA長為半徑的圓上.∴⊙O就是所求作的圓,在上面的作圖過程中.∵直線DE和FG只有一個(gè)交點(diǎn)O,并且點(diǎn)O到A,B,C三個(gè)點(diǎn)的距離相等,∴經(jīng)過點(diǎn)A,B,C三點(diǎn)可以作一個(gè)圓,并且只能作一個(gè)圓.ABCODEGF請(qǐng)你證明你作的圓符合要求證明:∵點(diǎn)O在AB的垂直平分線上,A定理:不在同一直線上的三點(diǎn)確定一個(gè)圓OABC我們的收獲定理:OABC我們的收獲O1.由定理可知:經(jīng)過三角形三個(gè)頂點(diǎn)可以作一個(gè)圓.并且只能作一個(gè)圓.2.經(jīng)過三角形各頂點(diǎn)的圓叫做三角形的外接圓.3.三角形外接圓的圓心叫做三角形的外心,這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形.ABCO1.由定理可知:經(jīng)過三角形三個(gè)頂點(diǎn)可以作一個(gè)圓.并且只能作圓的內(nèi)接三角形三角形的外接圓三角形的外心ABCO
外心1.三邊垂直平分線的交點(diǎn)2.到三個(gè)頂點(diǎn)距離相等圓的內(nèi)接三角形三角形的外接圓三角形的外心ABCO外心OABCABCO直角三角形外心是斜邊AB的中點(diǎn)鈍角三角形外心在△ABC的外面三角形的外心是否一定在三角形的內(nèi)部?OABCABCO直角三角形外心是斜邊AB的中點(diǎn)鈍角三角形外心2.經(jīng)過同一條直線三個(gè)點(diǎn)能作出一個(gè)圓嗎??思考l1l2ABCP如圖,假設(shè)過同一條直線l上三點(diǎn)A、B、C可以作一個(gè)圓,設(shè)這個(gè)圓的圓心為P,那么點(diǎn)P既在線段AB的垂直平分線l1上,又在線段BC的垂直平分線l2上,即點(diǎn)P為l1與l2的交點(diǎn),而l1⊥l,l2⊥l這與我們以前學(xué)過的“過一點(diǎn)有且只有一條直線與已知直線垂直”相矛盾,所以過同一條直線上的三點(diǎn)不能作圓.2.經(jīng)過同一條直線三個(gè)點(diǎn)能作出一個(gè)圓嗎??思考l1l2ABC先假設(shè)命題的結(jié)論不成立,然后由此經(jīng)過推理得出矛盾(常與公理、定理、定義或已知條件相矛盾),由矛盾判定假設(shè)不正確,從而得到原命題成立,這種方法叫做反證法.什么叫反證法?先假設(shè)命題的結(jié)論不成立,然后由此經(jīng)過推理得出矛盾(常與公理、一、判斷題:1、過三點(diǎn)一定可以作圓 ()2、三角形有且只有一個(gè)外接圓()3、任意一個(gè)圓有一個(gè)內(nèi)接三角形,并且只有一個(gè)內(nèi)接三角形 ()4、三角形的外心就是這個(gè)三角形任意兩邊垂直平分線的交點(diǎn) ()5、三角形的外心到三邊的距離相等 ()錯(cuò)對(duì)錯(cuò)對(duì)錯(cuò)一、判斷題:錯(cuò)對(duì)錯(cuò)對(duì)錯(cuò)二、思考:如圖,CD所在的直線垂直平分線段AB,怎樣用這樣的工具找到圓形工件的圓心.DABCO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職第二學(xué)年(英語基礎(chǔ))日常用語綜合測試試題及答案
- 2025年中職(大數(shù)據(jù)與會(huì)計(jì))會(huì)計(jì)電算化實(shí)操試題及答案
- 2025年中職第一學(xué)年(畜牧獸醫(yī))畜禽常見病防治試題及答案
- 2025年大學(xué)制藥工程(制藥設(shè)備管理)試題及答案
- 2025年中職工程運(yùn)營管理(管理技術(shù))試題及答案
- 2025年高職工藝美術(shù)品設(shè)計(jì)(工藝品設(shè)計(jì))試題及答案
- 2025年高職烹飪工藝與營養(yǎng)(烹飪安全管理)試題及答案
- 2025年中職電力系統(tǒng)自動(dòng)化技術(shù)(電力系統(tǒng)操作)試題及答案
- 2025年大學(xué)醫(yī)學(xué)技術(shù)(醫(yī)學(xué)影像技術(shù))試題及答案
- 2025年高職(會(huì)計(jì))稅務(wù)會(huì)計(jì)實(shí)務(wù)試題及答案
- 施工現(xiàn)場火災(zāi)事故預(yù)防及應(yīng)急措施
- 污水處理站施工安全管理方案
- 2025年蘇州市事業(yè)單位招聘考試教師招聘體育學(xué)科專業(yè)知識(shí)試卷
- 加油站投訴處理培訓(xùn)課件
- 學(xué)堂在線 雨課堂 學(xué)堂云 唐宋詞鑒賞 期末考試答案
- 2025至2030中國輻射監(jiān)測儀表市場投資效益與企業(yè)經(jīng)營發(fā)展分析報(bào)告
- 工程力學(xué)(本)2024國開機(jī)考答案
- 產(chǎn)品認(rèn)證標(biāo)志管理制度
- CJ/T 192-2017內(nèi)襯不銹鋼復(fù)合鋼管
- GB/T 31907-2025服裝測量方法
- 消毒供應(yīng)中心清洗流程
評(píng)論
0/150
提交評(píng)論