版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數學模擬測試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列為等差數列,為其前項和,,則()A. B. C. D.2.已知為銳角,且,則等于()A. B. C. D.3.已知半徑為2的球內有一個內接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.4.已知等差數列的公差為,前項和為,,,為某三角形的三邊長,且該三角形有一個內角為,若對任意的恒成立,則實數().A.6 B.5 C.4 D.35.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.6.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.7.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.8.函數的單調遞增區(qū)間是()A. B. C. D.9.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.10.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.411.已知集合,則()A. B.C. D.12.復數滿足(為虛數單位),則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,分別為內角,,的對邊,,,,則的面積為__________.14.在的展開式中,項的系數是__________(用數字作答).15.在數列中,,,曲線在點處的切線經過點,下列四個結論:①;②;③;④數列是等比數列;其中所有正確結論的編號是______.16.如圖,直線是曲線在處的切線,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=x(1)討論fx(2)當x≥-1時,fx+a18.(12分)已知函數存在一個極大值點和一個極小值點.(1)求實數a的取值范圍;(2)若函數的極大值點和極小值點分別為和,且,求實數a的取值范圍.(e是自然對數的底數)19.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.20.(12分)已知等差數列的公差,且,,成等比數列.(1)求數列的通項公式;(2)設,求數列的前項和.21.(12分)在綜合素質評價的某個維度的測評中,依據評分細則,學生之間相互打分,最終將所有的數據合成一個分數,滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學生的在該維度的測評結果,在畢業(yè)班中隨機抽出一個班的數據.該班共有60名學生,得到如下的列聯(lián)表:優(yōu)秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?(3)現在如果想了解全校學生在該維度的表現情況,采取簡單隨機抽樣方式在全校學生中抽取少數一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02422.(10分)已知數列滿足:對任意,都有.(1)若,求的值;(2)若是等比數列,求的通項公式;(3)設,,求證:若成等差數列,則也成等差數列.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【題目詳解】由等差數列的性質可得,.故選:B.【答案點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.2、C【答案解析】
由可得,再利用計算即可.【題目詳解】因為,,所以,所以.故選:C.【答案點睛】本題考查二倍角公式的應用,考查學生對三角函數式化簡求值公式的靈活運用的能力,屬于基礎題.3、D【答案解析】
分別求出球和圓柱的體積,然后可得比值.【題目詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【答案點睛】本題主要考查幾何體的體積求解,側重考查數學運算的核心素養(yǎng).4、C【答案解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時的n即可.【題目詳解】由已知,,又三角形有一個內角為,所以,,解得或(舍),故,當時,取得最大值,所以.故選:C.【答案點睛】本題考查等差數列前n項和的最值問題,考查學生的計算能力,是一道基礎題.5、C【答案解析】
由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【題目詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【答案點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.6、C【答案解析】
計算出、,進而可得出結論.【題目詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【答案點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.7、B【答案解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【題目詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【答案點睛】本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.8、D【答案解析】
利用輔助角公式,化簡函數的解析式,再根據正弦函數的單調性,并采用整體法,可得結果.【題目詳解】因為,由,解得,即函數的增區(qū)間為,所以當時,增區(qū)間的一個子集為.故選D.【答案點睛】本題考查了輔助角公式,考查正弦型函數的單調遞增區(qū)間,重點在于把握正弦函數的單調性,同時對于整體法的應用,使問題化繁為簡,難度較易.9、C【答案解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【題目詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【答案點睛】本題考查了線面角的正弦值的求法,也考查數形結合思想和向量法的應用,屬于中檔題.10、A【答案解析】
根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【題目詳解】根據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【答案點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.11、B【答案解析】
先由得或,再計算即可.【題目詳解】由得或,,,又,.故選:B【答案點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.12、C【答案解析】
直接利用復數的除法的運算法則化簡求解即可.【題目詳解】由得:本題正確選項:【答案點睛】本題考查復數的除法的運算法則的應用,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
根據題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【題目詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【答案點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.14、【答案解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.15、①③④【答案解析】
先利用導數求得曲線在點處的切線方程,由此求得與的遞推關系式,進而證得數列是等比數列,由此判斷出四個結論中正確的結論編號.【題目詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數列,從而,,.故所有正確結論的編號是①③④.故答案為:①③④【答案點睛】本小題主要考查曲線的切線方程的求法,考查根據遞推關系式證明等比數列,考查等比數列通項公式和前項和公式,屬于基礎題.16、.【答案解析】
求出切線的斜率,即可求出結論.【題目詳解】由圖可知直線過點,可求出直線的斜率,由導數的幾何意義可知,.故答案為:.【答案點睛】本題考查導數與曲線的切線的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)-∞,1【答案解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對a分類討論,即可得出單調性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當x=-1時,0≤-1e+1恒成立.當x>-1時,a≤xe【題目詳解】解法一:(1)f①當a≤0時,x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調遞減,在(-1,+∞)單調遞增.②當a>0時,f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調遞增,在綜上:當a≤0時,f(x)在(-∞,-1)上單調遞減,在(-1,+∞)上單調遞增;當0<a<1e時,f(x)在(-∞,lna),自a=1e時,f(x)在當a>1e時,f(x)在(-∞,-1),(ln(2)因為xex-ax-a+1≥0當x=-1時,0≤-1當x>-1時,a≤x令g(x)=xex設h(x)=e因為h'(x)=e即hx=e又因為h0=0,所以g(x)=xex則g(x)min=g(0)=1綜上,a的取值范圍為-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'當a≤0時,g'(x)≥0,則g(x)在所以g(x)≥g(-1)=-1當0<a≤1時,令h(x)=e因為h'(x)=2ex+x又因為h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘極小值↗g==-e當a>1時,g(0)=-a+1<0,不滿足題意.綜上,a的取值范圍為-∞,1.【答案點睛】本題考查了利用導數研究函數的單調性極值與最值、分類討論方法、方程與不等式的解法,考查了推理能力與計算能力,屬于難題.18、(1);(2).【答案解析】
(1)首先對函數求導,根據函數存在一個極大值點和一個極小值點求出a的取值范圍;(2)首先求出的值,再根據求出實數a的取值范圍.【題目詳解】(1)函數的定義域為是,,若有兩個極值點,則方程一定有兩個不等的正根,設為和,且,所以解得,此時,當時,,當時,,當時,,故是極大值點,是極小值點,故實數a的取值范圍是;(2)由(1)知,,,則,,,由,得,即,令,考慮到,所以可化為,而,所以在上為增函數,由,得,故實數a的取值范圍是.【答案點睛】本題主要考查了利用導數研究函數的極值點和單調性,利用函數單調性證明不等式,屬于難題.19、(1)見解析;(2)【答案解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質定理即可得證;(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;【題目詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,則,,設則由,可得,,即,所以可得,所以,設平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設平面與平面所成的二面角為,則,結合圖形可知平面與平面所成的二面角的余弦值為.【答案點睛】本題考查線面平行的判定定理及性質定理的應用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.20、(1);(2).【答案解析】
(1)根據等比中項性質可構造方程求得,由等差數列通項公式可求得結果;(2)由(1)可得,可知為等比數列,利用分組求和法,結合等差和等比數列求和公式可求得結果.【題目詳解】(1)成等比數列,,即,,解得:,.(2)由(1)得:,,,數列是首項為,公比為的等比數列,.【答案點睛】本題考查等差數列通項公式的求解、分組求和法求解數列的前項和的問題;關鍵是能夠根據通項公式證得數列為等比數列,進而采用分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職第二學年(英語基礎)日常用語綜合測試試題及答案
- 2025年中職(大數據與會計)會計電算化實操試題及答案
- 2025年中職第一學年(畜牧獸醫(yī))畜禽常見病防治試題及答案
- 2025年大學制藥工程(制藥設備管理)試題及答案
- 2025年中職工程運營管理(管理技術)試題及答案
- 2025年高職工藝美術品設計(工藝品設計)試題及答案
- 2025年高職烹飪工藝與營養(yǎng)(烹飪安全管理)試題及答案
- 2025年中職電力系統(tǒng)自動化技術(電力系統(tǒng)操作)試題及答案
- 2025年大學醫(yī)學技術(醫(yī)學影像技術)試題及答案
- 2025年高職(會計)稅務會計實務試題及答案
- 施工現場火災事故預防及應急措施
- 污水處理站施工安全管理方案
- 2025年蘇州市事業(yè)單位招聘考試教師招聘體育學科專業(yè)知識試卷
- 加油站投訴處理培訓課件
- 學堂在線 雨課堂 學堂云 唐宋詞鑒賞 期末考試答案
- 2025至2030中國輻射監(jiān)測儀表市場投資效益與企業(yè)經營發(fā)展分析報告
- 工程力學(本)2024國開機考答案
- 產品認證標志管理制度
- CJ/T 192-2017內襯不銹鋼復合鋼管
- GB/T 31907-2025服裝測量方法
- 消毒供應中心清洗流程
評論
0/150
提交評論