廣東省深圳市深圳實驗學校2022-2023學年九年級數(shù)學上冊期末調研試題含解析_第1頁
廣東省深圳市深圳實驗學校2022-2023學年九年級數(shù)學上冊期末調研試題含解析_第2頁
廣東省深圳市深圳實驗學校2022-2023學年九年級數(shù)學上冊期末調研試題含解析_第3頁
廣東省深圳市深圳實驗學校2022-2023學年九年級數(shù)學上冊期末調研試題含解析_第4頁
廣東省深圳市深圳實驗學校2022-2023學年九年級數(shù)學上冊期末調研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,△ABC的頂點都是正方形網(wǎng)格中的格點,則cos∠ABC等于()A. B. C. D.2.要使式子有意義,則x的值可以是()A.2 B.0 C.1 D.93.已知反比例函數(shù)的表達式為,它的圖象在各自象限內具有y隨x的增大而增大的特點,則k的取值范圍是().A.k>-2 B. C. D.4.二次函數(shù)y=ax2+bx+c的部分對應值如表:利用該二次函數(shù)的圖象判斷,當函數(shù)值y>0時,x的取值范圍是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>45.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,若旋轉角為20°,則∠1為()A.110° B.120° C.150° D.160°6.如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是()A. B. C. D.7.如圖,在平面直角坐標系中,點,y是關于的二次函數(shù),拋物線經過點.拋物線經過點拋物線經過點拋物線經過點則下列判斷:①四條拋物線的開口方向均向下;②當時,四條拋物線表達式中的均隨的增大而增大;③拋物線的頂點在拋物線頂點的上方;④拋物線與軸交點在點的上方.其中正確的是A.①②④ B.①③④C.①②③ D.②③④8.下列事件中,是隨機事件的是()A.三角形任意兩邊之和大于第三邊B.任意選擇某一電視頻道,它正在播放新聞聯(lián)播C.a是實數(shù),|a|≥0D.在一個裝著白球和黑球的袋中摸球,摸出紅球9.如圖,菱形ABCD與等邊△AEF的邊長相等,且E、F分別在BC、CD,則∠BAD的度數(shù)是()A.80° B.90° C.100° D.120°10.若兩個相似三角形的周長之比是1:4,那么這兩個三角形的面積之比是()A.1:4 B.1:2 C.1:16 D.1:811.如圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結果下面有三個推斷:①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③12.下列說法正確的是().A.一顆質地均勻的骰子已連續(xù)拋擲了2000次.其中,拋擲出5點的次數(shù)最多,則第2001次一定拋擲出5點.B.某種彩票中獎的概率是1%,因此買100張該種彩票一定會中獎C.天氣預報說:明天下雨的概率是50%,所以明天將有一半時間在下雨D.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等二、填空題(每題4分,共24分)13.在Rt△ABC中,若∠C=90°,cosA=,則sinA=________.14.若拋物線y=2x2+6x+m與x軸有兩個交點,則m的取值范圍是_____.15.如果將拋物線向上平移,使它經過點那么所得新拋物線的解析式為____________.16.如圖,在菱形ABCD中,E是BC邊上的點,AE交BD于點F,若EC=2BE,則的值是.17.如圖,已知AB是⊙O的直徑,弦CD與AB相交,若∠BCD=24°,則∠ABD的度數(shù)為___度.18.一支反比例函數(shù),若,則y的取值范圍是_____.三、解答題(共78分)19.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.20.(8分)一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、-2、-3、4,它們除了標有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片.(1)求小芳抽到負數(shù)的概率;(2)若小明再從剩余的三張卡片中隨機抽取一張,請你用樹狀圖或列表法,求小明和小芳兩人均抽到負數(shù)的概率.21.(8分)如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)(x>0)的圖象經過線段OC的中點A,交DC于點E,交BC于點F.設直線EF的解析式為y2=k2x+b.(1)求反比例函數(shù)和直線EF的解析式;(溫馨提示:平面上有任意兩點M(x1,y1)、N(x2,y2),它們連線的中點P的坐標為())(2)求△OEF的面積;(3)請結合圖象直接寫出不等式k2x-b﹣>0的解集.22.(10分)如圖①,A(﹣5,0),OA=OC,點B、C關于原點對稱,點B(a,a+1)(a>0).(1)求B、C坐標;(2)求證:BA⊥AC;(3)如圖②,將點C繞原點O順時針旋轉α度(0°<α<180°),得到點D,連接DC,問:∠BDC的角平分線DE,是否過一定點?若是,請求出該點的坐標;若不是,請說明理由.23.(10分)如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達高鐵,求A地到C地之間高鐵線路的長(結果保留整數(shù))(參考數(shù)據(jù):sin67°≈0.92;cos67°≈0.38;≈1.73)24.(10分)如圖,是的外接圓,為直徑,的平分線交于點,過點的切線分別交,的延長線于點,,連接.(1)求證:;(2)若,,求的半徑.25.(12分)如圖,等邊三角形ABC放置在平面直角坐標系中,已知A(0,0),B(4,0),反比例函數(shù)的圖象經過點C.求點C的坐標及反比例函數(shù)的解析式.26.小亮晚上在廣場散步,圖中線段AB表示站立在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈的位置.(1)請你在圖中畫出小亮站在AB處的影子BE;(2)小亮的身高為1.6m,當小亮離開燈桿的距離OB為2.4m時,影長為1.2m,若小亮離開燈桿的距離OD=6m時,則小亮(CD)的影長為多少米?

參考答案一、選擇題(每題4分,共48分)1、B【詳解】由格點可得∠ABC所在的直角三角形的兩條直角邊為2,4,∴斜邊為.∴cos∠ABC=.故選B.2、D【解析】式子為二次根式,根據(jù)二次根式的性質,被開方數(shù)大于等于0,可得x-50,解不等式就可得到答案.【詳解】∵式子有意義,∴x-50,∴x5,觀察個選項,可以發(fā)現(xiàn)x的值可以是9.故選D.【點睛】本題考查二次根式有意義的條件.3、C【分析】先根據(jù)反比例數(shù)的圖象在每一象限內y隨x的增大而增大得出關于k的不等式,求出k的取值范圍即可.【詳解】解:∵反比例數(shù)的圖象在每一象限內y隨x的增大而增大,

∴<0,解得k<-1.

故選:C.【點睛】本題考查的是反比例函數(shù)的性質,熟知反比例函數(shù)(k≠0)中,當k<0時,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大是解答此題的關鍵4、C【分析】觀察表格得出拋物線頂點坐標是(1,9),對稱軸為直線x=1,而當x=-2時,y=0,則拋物線與x軸的另一交點為(1,0),由表格即可得出結論.【詳解】由表中的數(shù)據(jù)知,拋物線頂點坐標是(1,9),對稱軸為直線x=1.當x<1時,y的值隨x的增大而增大,當x>1時,y的值隨x的增大而減小,則該拋物線開口方向向上,所以根據(jù)拋物線的對稱性質知,點(﹣2,0)關于直線直線x=1對稱的點的坐標是(1,0).所以,當函數(shù)值y>0時,x的取值范圍是﹣2<x<1.故選:C.【點睛】本題考查了二次函數(shù)與x軸的交點、二次函數(shù)的性質等知識,解答本題的關鍵是要認真觀察,利用表格中的信息解決問題.5、A【解析】設C′D′與BC交于點E,如圖所示:∵旋轉角為20°,∴∠DAD′=20°,∴∠BAD′=90°?∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°?70°?90°?90°=11°,∴∠1=∠BED′=110°.故選A.6、B【詳解】由PB+PC=BC和PA+PC=BC易得PA=PB,根據(jù)線段垂直平分線定理的逆定理可得點P在AB的垂直平分線上,于是可判斷D選項正確.故選B.考點:作圖—復雜作圖7、A【分析】根據(jù)BC的對稱軸是直線x=1.5,的對稱軸是直線x=1,畫大致示意圖,即可進行判定.【詳解】解:①由可知,四條拋物線的開口方向均向下,故①正確;②和的對稱軸是直線x=1.5,和的對稱軸是直線x=1,開口方向均向下,所以當時,四條拋物線表達式中的均隨的增大而增大,故②正確;③和的對稱軸都是直線x=1.5,D關于直線x=1.5的對稱點為(-1,-2),而A點坐標為(-2,-2),可以判斷比更陡,所以拋物線的頂點在拋物線頂點的下方,故③錯誤;④的對稱軸是直線x=1,C關于直線x=1的對稱點為(-1,3),可以判斷出拋物線與軸交點在點的上方,故④正確.故選:A.【點睛】本題考查了二次函數(shù)的圖象和性質,根據(jù)對稱點找到對稱軸是解題的關鍵,充分運用數(shù)形結合的思想能使解題更加簡便.如果逐個計算出解析式,工作量顯然更大.8、B【分析】隨機事件就是可能發(fā)生也可能不發(fā)生的事件,根據(jù)定義即可判斷.【詳解】A、三角形任意兩邊之和大于第三邊是必然事件,故選項不合題意;B、任意選擇某一電視頻道,它正在播放新聞聯(lián)播,是隨機事件,故選項符合題意;C、a是實數(shù),|a|≥0,是必然事件,故選項不合題意;D、在一個裝著白球和黑球的袋中摸球,摸出紅球,是不可能事件,故選項不合題意.故選:B.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、C【解析】試題分析:根據(jù)菱形的性質推出∠B=∠D,AD∥BC,根據(jù)平行線的性質得出∠DAB+∠B=180°,根據(jù)等邊三角形的性質得出∠AEF=∠AFE=60°,AF=AD,根據(jù)等邊對等角得出∠B=∠AEB,∠D=∠AFD,設∠BAE=∠FAD=x,根據(jù)三角形的內角和定理得出方程x+2(180°﹣60°﹣2x)=180°,求出方程的解即可求出答案.解:∵四邊形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等邊三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的內角和定理得:∠BAE=∠FAD,設∠BAE=∠FAD=x,則∠D=∠AFD=180°﹣∠EAF﹣(∠BAE+∠FAD)=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠BAD=2×20°+60°=100°,故選C.考點:菱形的性質;全等三角形的判定與性質;等邊三角形的性質.10、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方可得答案.【詳解】解:∵相似三角形的周長之比是1:4,∴對應邊之比為1:4,∴這兩個三角形的面積之比是:1:16,故選C.【點睛】此題主要考查了相似三角形的性質,關鍵是掌握相似三角形的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.11、B【分析】隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,據(jù)此進行判斷即可.【詳解】解:①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,“正面向上”的概率不一定是0.47,故錯誤;②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,故正確;③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率不一定是0.1,故錯誤.故選:B.【點睛】本題考查了利用頻率估計概率,明確概率的定義是解題的關鍵.12、D【解析】概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生.【詳解】A.

是隨機事件,錯誤;

B.

中獎的概率是1%,買100張該種彩票不一定會中獎,錯誤;

C.

明天下雨的概率是50%,是說明天下雨的可能性是50%,而不是明天將有一半時間在下雨,錯誤;

D.

正確。

故選D.【點睛】本題考查概率的意義,解題的關鍵是掌握概率的意義.二、填空題(每題4分,共24分)13、【分析】根據(jù)同一銳角的正弦與余弦的平方和是1,即可求解.【詳解】解:,即,,或(舍去),.故答案為:.【點睛】此題主要考查了同角的三角函數(shù),關鍵是掌握同一銳角的正弦與余弦之間的關系:對任一銳角,都有.14、【分析】由拋物線與x軸有兩個交點,可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=2x2+6x+m與x軸有兩個交點,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案為:m.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2﹣4ac>0時,拋物線與x軸有2個交點”是解答本題的關鍵.15、【分析】設平移后的拋物線解析式為,把點A的坐標代入進行求值即可得到b的值.【詳解】解:設平移后的拋物線解析式為,把A(0,3)代入,得3=?1+b,解得b=4,則該函數(shù)解析式為.故答案為:.【點睛】主要考查了函數(shù)圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.會利用方程求拋物線與坐標軸的交點.16、【解析】EC=2BE,得,由于AD//BC,得17、66【解析】連接AD,根據(jù)圓周角定理可求∠ADB=90°,由同弧所對圓周角相等可得∠DCB=∠DAB,即可求∠ABD的度數(shù).【詳解】解:連接AD,∵AB是直徑,∴∠ADB=90°,∵∠BCD=24°,∴∠BAD=∠BCD=24°,∴∠ABD=66°,故答案為:66【點睛】本題考查了圓周角定理,根據(jù)圓周角定理可求∠ADB=90°是本題的關鍵.18、y<-1【分析】根據(jù)函數(shù)解析式可知當x>0時,y隨x的增大而增大,求出當x=1時對應的y值即可求出y的取值范圍.【詳解】解:∵反比例函數(shù),-4<0,∴當x>0時,y隨x的增大而增大,當x=1時,y=-1,∴當,則y的取值范圍是y<-1,故答案為:y<-1.【點睛】本題考查了根據(jù)反比例函數(shù)自變量的取值范圍,確定函數(shù)值的取值范圍,解題的關鍵是熟知反比例函數(shù)的增減性.三、解答題(共78分)19、(1)(2).【分析】(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.20、(1);(2)【分析】(1)由一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、-2、-3、4,它們除了標有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片,抽到負數(shù)的有2種情況,直接利用概率公式求解即可求得答案.(2)首先根據(jù)題意畫出樹狀圖或列表,然后由圖表求得所有等可能的結果與小明和小芳兩人均抽到負數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1、-2、-3、4,它們除了標有的數(shù)字不同之外再也沒有其它區(qū)別,∴小芳從盒子中隨機抽取一張卡片,抽到負數(shù)的有2種情況,∴P(小芳抽到負數(shù))=(2)畫樹狀圖如下:∵共有12種機會均等的結果,其中兩人均抽到負數(shù)的有2種,∴P(兩人均抽到負數(shù))=21、(1)(2)(3)x<-6或-1.5<x<1【分析】(1)根據(jù)點A是OC的中點,可得A(3,2),可得反比例函數(shù)解析式為y1=,根據(jù)E(,4),F(xiàn)(6,1),運用待定系數(shù)法即可得到直線EF的解析式為y=-x+5;(2)過點E作EG⊥OB于G,根據(jù)點E,F(xiàn)都在反比例函數(shù)y1=的圖象上,可得S△EOG=S△OBF,再根據(jù)S△EOF=S梯形EFBG進行計算即可;(3)根據(jù)點E,F(xiàn)關于原點對稱的點的坐標分別為(-1.5,-4),(-6,-1),可得不等式k2x-b->1的解集為:x<-6或-1.5<x<1.【詳解】(1)∵D(1,4),B(6,1),∴C(6,4),∵點A是OC的中點,∴A(3,2),把A(3,2)代入反比例函數(shù)y1=,可得k1=6,∴反比例函數(shù)解析式為y1=,把x=6代入y1=,可得y=1,則F(6,1),把y=4代入y1=,可得x=,則E(,4),把E(,4),F(xiàn)(6,1)代入y2=k2x+b,可得,解得,∴直線EF的解析式為y=-x+5;(2)如圖,過點E作EG⊥OB于G,∵點E,F(xiàn)都在反比例函數(shù)y1=的圖象上,∴S△EOG=S△OBF,∴S△EOF=S梯形EFBG=(1+4)×=;(3)由圖象可得,點E,F(xiàn)關于原點對稱的點的坐標分別為(-1.5,-4),(-6,-1),∴由圖象可得,不等式k2x-b->1的解集為:x<-6或-1.5<x<1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題以及矩形性質的運用,求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解.解題時注意運用數(shù)形結合思想得到不等式的解集.22、(1)點B(3,4),點C(﹣3,﹣4);(2)證明見解析;(3)定點(4,3);理由見解析.【分析】(1)由中心對稱的性質可得OB=OC=5,點C(﹣a,﹣a﹣1),由兩點距離公式可求a的值,即可求解;(2)由兩點距離公式可求AB,AC,BC的長,利用勾股定理的逆定理可求解;(3)由旋轉的性質可得DO=BO=CO,可得△BCD是直角三角形,以BC為直徑,作⊙O,連接OH,DE與⊙O交于點H,由圓周角定理和角平分線的性質可得∠HBC=∠CDE=45°=∠BDE=∠BCH,可證CH=BH,∠BHC=90°,由兩點距離公式可求解.【詳解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵點B、C關于原點對稱,點B(a,a+1)(a>0),∴OB=OC=5,點C(﹣a,﹣a﹣1),∴5=,∴a=3,∴點B(3,4),∴點C(﹣3,﹣4);(2)∵點B(3,4),點C(﹣3,﹣4),點A(﹣5,0),∴BC=10,AB=4,AC=2,∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)過定點,理由如下:∵將點C繞原點O順時針旋轉α度(0°<α<180°),得到點D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如圖②,以BC為直徑,作⊙O,連接OH,DE與⊙O交于點H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=5,OH=OB=OC=5,設點H(x,y),∵點H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴點H(4,﹣3),∴∠BDC的角平分線DE過定點H(4,3).【點睛】本題是幾何變換綜合題,考查了中心對稱的性質,直角三角形的性質,角平分線的性質,圓的有關知識,勾股定理的逆定理,兩點距離公式等知識,靈活運用這些性質解決問題是本題的關鍵.23、A地到C地之間高鐵線路的長為592km.【分析】過點B作BD⊥AC于點D,利用銳角三角函數(shù)的定義求出AD及CD的長,進而可得出結論.【詳解】過點B作BD⊥AC于點D,∵B地位于A地北偏東67°方向,距離A地520km,∴∠ABD=67°,∴AD=AB?sin67°=520×0.92=478.4km,BD=AB?cos67°=520×0.38=197.6km.∵C地位于B地南偏東30°方向,∴∠CBD=30°,∴CD=BD?tan30°=197.6×≈113.9km,∴AC=AD+CD=478.4+113.9≈592(km).答:A地到C地之間高鐵線路的長為592km.【點睛】考查了解直角三角形的應用-方向角問題,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,需要熟記銳角三角函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論