版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2-14R(s)G(s)-2-14R(s)G(s)-E(s)G(s)41+X(s)G(s)+C(s)3G(s)2D(s)
=GG
Δ=1P
=GG
Δ=11 1P=GG
3 1Δ=1
2 2=GG
3 2Δ=13 1 4 3
4 2 4 4L=-GGL=-GG
C(s) (G+G)(G+G)= 1 2 3 4 1 1 3 2
2 3R(s)
(G+G)E(s)= 1
X(s)
(s)
C(s)=1
3 1 2R(s) 1+G(G+G
E(s)
D(s)3 1 2R(s)R(s)1+-GG2G C(s)311H2H1R(s)+2-G4GGC(s)256
解:L=GG
L=-G
GGHH L=-G1 1 2 2 1Δ=1-GG+GGG
4 5 1 2 3 4HH+G-GGG1 2 1 4 35 1 2 4 1 2 4P=GGG Δ=1+G1 1 2 3 1 4C(s)1 =
GGG(1+G)1 2 3 4R(s) 1+G
+GGGHH-GG-GGG1 4 1 4 5 1
1 2 1 2 4C(s)
GG
(1-GG)
C(s) -GGGGGHR2(s)
+G
5
H
2 -GG
R(s)
+GG1
G1-GGG2 4 1 4 5 1 2 1
1 2 4 2
4 1 4 5 1 2 1
1 2 4C(s) GGGGHR2(s)=1+G+GG1G4H5H6-G2G-GGG1 4 1 4 5 1 2 1 2 1 2 4設(shè)溫度計(jì)需要在一分鐘內(nèi)指示出響應(yīng)值的并且假設(shè)溫度計(jì)為一階系統(tǒng),求時(shí)間常數(shù)T。如果將溫度計(jì)放在澡盆內(nèi),澡盆的溫度以10oC/min的速度線性變化,解: c(t)=c(∞)98% t=4T=1min T=0.25 r(t)=10tc(t)=10(t-T+e-t/T)=10(T-e-t/T)e(t)=r(t)-c(t)
=lime(t)=10T=2.5sst→∞R1電路如圖,設(shè)系統(tǒng)初始狀態(tài)為零。u R C
=20kΩ
=200kΩ
0 - ∞ u+ c+(1)時(shí)的值.R/R K解:G(s)=R
1
=Ts+
T=RC=0.5 K=R/R=101u(t)=K(1–c
1-Tt)=10(1–e-2t)-T
1 08=10(1–e-2t)0.8=1–e-2t e-2t=0.2 t=0.8(2)求系統(tǒng)的單位脈沖響應(yīng),單位斜坡響應(yīng),及單位拋物響應(yīng)在t1時(shí)刻的值.解: t1
=0.8 R(s)=1
Ke-t/T=4s2R(s)=s2
u(t)=K(t-T+Te-t/T)=4TcTR(s)=
U(s)= K 1=K(1
T+T2
T2 )s3 c Ts+1s3 s3 s2 s s+1/T2u(t)=10(2c
1t2-0.5t+0.25-0.25e-2t)=1.2
G(s)= 4
s(s+5)解: C(s) 4 1
4 1
4/3R(s)=R(s)=
C(s)=s(s+1)(s+4)=
+
-s+1c(t)=1+
1e-4t-4e-t 3 3G(s)= 1r p 升時(shí)間t、峰值時(shí)間t、超調(diào)量σ%和調(diào)整時(shí)間tr p
s(s+1)C(s) 1
ω
ω=1 ω
1-ζ2=0.866ζ解: R(s)=ζ
n n d ns2+s+1
ω2=n
=0.5 =t112=60oωt3.14-3.14/3=2.42 ω
=π
3.14
=3.63r d 0.866
p d 0.866ω%=π1100%ω
t= 3=6 t= 4=8 e-1.8
ω ωn nss3-6已知系統(tǒng)的單位階躍響應(yīng):c(t)=1+0.2e-60t-1.2e-10tss系統(tǒng)的閉環(huán)傳遞函數(shù)。系統(tǒng)的阻尼比和無阻尼振蕩頻率。解:C(s)= + 解:C(s)= + - s s+60s+10s(s+60)(s+10)R(s)=1
ω
ω=24.5s R(s)
nω2n
nζ=1.431.31c(t)0 1.31c(t)0 0.1t解:
ωπ=0.1 /12=ln3.3=1.19
1-ζ2=3.14=31.4p n12 π
n 0.1π1ζ
ζ)2/12
ω=33.4e 2π1-
9.82=1.42-1.42
n
1115.6e
ζ=0.35
G(s)=s(s+ωn
)=s(s+22.7)3-11 已知閉環(huán)系統(tǒng)的特征方程式,試用勞斯判據(jù)判斷系統(tǒng)的穩(wěn)定性。s3+20s2+9s+100=0勞斯表如下:s3 1 9s2 20 100s1 4s0100
(3)s4+8s3+18s2+16s+5=0勞斯表如下:s41185s3816s2165s1s116系統(tǒng)穩(wěn)定。
G(s)=
s0 5 系統(tǒng)穩(wěn)定。K(0.5s+1)3-12(+)(.+s+1)=b解:s4+3s3+4s2+2s+Ks+2K=0=bs4 1 4 s3 3 2+Ks2 b 2K31s1 bs41
10-2K31 3=bK2+10K-20=b41 10-K(K-1.7)(K+11.7)>0K<10R(s)-R(s)--s(s+1)τs10C(s)s3110s3110s2(1+1)10s1b31s010解:G(s)= 10(1+s)解:G(s)= +s+1s s(+s+1)b
10(s+1)3=10(1+1)-10>031
τ>0R(s)
τ
10 C(s)3-14已知系統(tǒng)結(jié)構(gòu)如圖,試確定系
- s s(s+1)解:G(s)=1(
Φ(s)=
1(s+1)s2(s+1)s3 1
3+2+1s+10110τ-101s2 1
b = >031s1 b31s0 10
τ>1
r(t)=I(t)+2t+t23-16已知單位反饋系統(tǒng)的開環(huán)傳遞函數(shù),
R(s)=
1 2 2+ s s2 s3+ =21(1)G(s)==21
R20 R
K=20p
ess1
1+0 1解: (0.1s+1)(0.2s+)
e =∞ss2K=0ae=∞ss
e =∞ss3K=∞ e =0(2)G(s)=
200 =
10 p
ss1 2 2s(s+2)(s+10)
s(0.5s+1)(0.1s+1)
ess2=K=10K=0ae=∞ss
e =∞ss3(3)
10(2s+1)=
(2s+1)
K=∞p
e =0ss1s2(s2+4s+10)
s2(0.1s2+0.4s+1) K
e =0υ ss2K=1a
e=2ss
e =2ss31已知系統(tǒng)結(jié)構(gòu)如圖(1)單位階躍輸入:R(s) - - K1
1C(s)s2ts
=1.8(5%)確定K1
和值。 K K ω
π
2=0.2解:G(s)= 1
Φ(s)=
1 n 1
ω2=K t
3=1.81 1
1 sω
ω=
=3.7
nn1.8*0.45 1 n(2)r(t)=I(t),t,
1t22 1
K=∞K 1 R(s)=s
e =0ss1解:G(s)=
1 = τ
υ=1
R(s)=1
K=K
=τ=0.24
1s+1)
s2
ss2s31 s31
R(s)=1
K=0 a
=∞ss3R(s)--s(s+2)τR(s)--s(s+2)τsKC(s)
確定K和τ值。解:G(s)=
ssKτ=
KK2+τ (s)=K s2+2s+K
s s( 1 s+1) 2+(2+)s+K2+τω=2+=2*0.7K e=2+=0.25 =31.62+τn ss Kω2=K 0.25K-2 n K系統(tǒng)結(jié)構(gòu)如圖。
D(s)1
D(s)2r(t)=d
(t)=d
(t)=I(t)
R(s) E(s)G(s) + F(s) + C(s)1 2 -作下的穩(wěn)態(tài)誤差.1解
=lims·
s = 1ssr
1+G(s)F(s)1+G(0)F(0)求
(t)和d(t)同時(shí)作用下的穩(wěn)態(tài)誤差.1
(s)H(s)Ed(s)=1+G
(s2)G1
H(s)·D(s)e =lims
-F(s)
-1 ]1
-[1+F(s)]ssd
1+G(s)F(s)
1+G(s)F(s)
1+G(0)F(0)求d(t)作用下的穩(wěn)態(tài)誤差.1 K F(s)=1G(s)=Kp+s Js -1)e =lim)
-F(s) 1=lims Js
1=0ssd
1+G(s)F(s)
1+(Kp
K 1 ss Js4-1 已知系統(tǒng)的零、極點(diǎn)分布如圖,大致繪制出系統(tǒng)的根軌跡。解:(1)
(3)
900
(4)
600σ 0σ 0(2)0σ(2)0σ600
(6)
(7)
1350
450
(8)
1080
3600σ
σ 0σ 0σ4-2 已知開環(huán)傳遞函數(shù),試用解析法繪制出系統(tǒng)的根軌
G(s)=
K(s+1)解
KKr
s=-1-Kr
r-3+j2r
jω0+j1K=0
s=-2+j0σ0σr→∞
s=0+j1
-2 -1K=r s=-3+j2jωpjωp3p2pzz01σ21解:解:(1)G(s)= jωjω6.2p4p3p2pz-5.6701-6.2(4)G(s)=s(s+3)(sr+7)(s+15)開環(huán)零、極點(diǎn)p=0 1
=-3 p2
=-7p4
=-15z1
=-8實(shí)軸上根軌跡段p~p
p~z
p~-∞1 2 3 1 4根軌跡的漸近線n-m=3σ=-3-7-15+8=-5.67180+60o,+3 o180根軌跡與虛軸的交點(diǎn)
分離點(diǎn)和會(huì)合點(diǎn)A(s)=s4+25s3+171s2+315sA(s)'=4s3+75s2+342s+315s4+25s3+171s2+323s+8K=0K=0ω=0 K=638ωr
B(s)=s+8s=-1.4
B(s)'=2s+7r 1 r 2,34-5 (1)(2)增益Kr復(fù)數(shù)特征根的實(shí)部為-2。pp2p1z10σ(Gs ss1)解: p=0 p=-1 z=-21 2 1p~p z~-∞1 2 1分離點(diǎn)和會(huì)合點(diǎn)s2+4s+2=0s1
=-3.41s2
=-0.59 r
)ω=0閉環(huán)特征方程式 r
)+2K=0rs2+s+Ks+2K=0
s=-2j
1.41r r(-2+2+(-2j)(1+K)+2K=0
K=3r r r已知系統(tǒng)的開環(huán)傳遞函數(shù),試確定閉環(huán)極點(diǎn)ζKr值。jω1.7s1s3p3-3p2jω1.7s1s3p3-3p2-1p1σ0-1.7rs(s+1)(s+3)解:
=0p=-1
=-3p~p p~1 2
1 2 33-1-33
根軌跡的分離點(diǎn):A(s)B'(s)=A'(s)B(s)3s2+8s+3=0s=-0.45 s1
=-2.2 舍去與虛軸交點(diǎn)
ζ=0.5得s1
=-0.37+j0.8s3+4s2+3s+K=0
s=-4+0.37×2=-3.263
rK
ω=0
=|s
||s
+1||s
+3|KKr=12
=±1.7
=3263
2.230.26=1.9r r 2,3 ×jωp3sjωp3s11.1-71.6p226.6-2.3 -1.2p1901350σ-1.1p4rs(s+3)(s2+2s+2)
=0
=-3
=-1±j p~p11 2 3.4 24-3-1-1=-1.254
+45o,θ=3
- -1 2 4=與虛軸的交點(diǎn)rs(s+3)(s2+2s+2)+K=0rrs4+5s3+8s2+6s+K=0r
分離點(diǎn)和會(huì)合點(diǎn)4s3+15s2+16s+6=0解得s=-2.3 ζ=0.5ω=0
得s=-0.36+j0.7518(j )1rω=0 K=0 1=0
K=|s
||s
+3||s
+1+j||s
+1-j|r Kr
r 1 1 1 1-5ω3+6ω=0
=8.16r
2,3
=2.92jωjω2.8s1spp332-4 -2p0σ1-2.8試?yán)L制出根軌跡圖。K解:
=0p=-2p
=-4p~p p~1 2
1 2 33-2-4=-23根軌跡的分離點(diǎn):A(s)B'(s)=A'(s)B(s)s=-0.85 s=-3.15 舍去(2) K(2) K阻尼振蕩響應(yīng)的
3+=0
Kr
ω=01r K
K=48ω
=±2.8s=-0.85 KKr=48r
r(4)ζ=0.5
r 2,3s=-0.7+j1.21(3)與虛軸交點(diǎn)s3+6s2+8s+K=0r
s=-6+0.7×2=-4.63K=4.6×2.6×0.6=7.2rr(t)=sin(t+30o),試求系解統(tǒng)Gs)態(tài)1出(s)= 10
10 = 10
10=0.905(s+1)
(s+11)
112+)112+112211 =-tgω=-tg1111
c(t)=0.9sin(t+24.8o)s(1)
750 I型系統(tǒng)n-m=3s(s+5)(s+15) =0 A)∞)=-9o∞ A)=0 0
ω=∞0 Re解(3)G(s)= 10 Im
ω=0ω=0Im0 Re解ω=0Im0 Re(2s+1)(8s+1)0型系統(tǒng)n-m=2=0 A)=10)=o∞ A)=0 =
ω=∞ω=00
s(s-1)解:I型系統(tǒng)n-m=2=0 A)=∞)=-270o=∞ A)=0 =0
10(s+0.2)s2(s+0.1)(s+15)
II型系統(tǒng)n-m=3 Im=0 A)=∞)=-180o
ω=0
ω=∞0 Re∞ A)=0 )=-270o5-2 G(s)=
750
dB
(3)G(s)= 10
L(ω)dBs(s+5)(s+15)40 -20dB/dec
(2s+1)(8s+1)G(s)= 1 101 20
15
20
-20dB/dec
0-20
1 5-40dB/dec
ωω=0.125ω=0.5
0-20
0.125 0.5 ω-40dB/dec20lgK=20dBω=5ω=15
-60dB/dec
1 2φ(ω0
φ(ω)1 2
ω
)=0o 0 ω
)=-90o)=-270o
-90-180-270
∞=0
-90-180
10s(s-1)
L(ω)dB40 -20dB/dec1ω=1 20lgK=20dB 2010
-40dB/dec1 ω=0 )=-27o-20∞=
φ(ω)ω-90-180-270(7)G(s)=
10(s+0.2) =
1.33(5s+1)s2(s+0.1)(s+15)解:20lgK=2.5dBω=0.1 ω=0.2
s2(10s+1)(0.67s+1)ω=151 2 3=0 )=-18o∞)=-270odB40dB40200-20-40dB/dec-60dB/dec150.10.2 1ω-40dB/dec0-90-180-270-60dB/decωdB02011020ω20dB/decdB20lgKdB20lgK10-20dB/decωcωK=10 20
(b)
20lgK=-20K=0.1G(s)= 10
G(s)=
s -(0.1s+1) 0
(0.05s+1)K=251
L(ω)dB4820lgK0
-20dB/dec-40dB/dec1050100ω
(c)
K=100
L(ω)dB-20dB/dec0 0.01
100ωG(s)=
251
-60dB/dec
100
-40dB/dec-60dB/dec(c) K=100
G(s)=s(100s+1)(0.01s+1)G(s)=
100 0L(ω)dBL(ω)dB-20dB/dec1000.01-40dB/dec-60dB/decωL(ω)dBL(ω)dB-20dB/dec4.58dB100ω-60dB/dec1ζ1220lgM=4.58 M=1.7= 得:dBr r0.94 ζ
01ω
2ω
=1001r n1-2 n 01
1002=ωn
G(s)=s[(0.02s)2+0.01s+1)]5-7 為積分環(huán)節(jié)個(gè)數(shù),試判別系統(tǒng)穩(wěn))
(b) p=0
Im υ=2p=0Imp=0Imυ=0ω=0-10Re系統(tǒng)不穩(wěn)定 系統(tǒng)穩(wěn)定(c)
p=0-1
Im υ=20
(d) -10
p=0υRe系統(tǒng)不穩(wěn)定
系統(tǒng)穩(wěn)定(e)p=0-1Imυ=1(f)Imp=1υ=00Reω=0-10Re系統(tǒng)穩(wěn)定
ω=0+
系統(tǒng)穩(wěn)定(g)
p=0
Im υ=1
(h)
Im υ=0-1 0
ω=0Re
-1 ω=00 Re系統(tǒng)穩(wěn)定 系統(tǒng)不穩(wěn)定ω=0+L(ω)dB-20dB/dec-40dB/dec0200.1ωL(ω)dB-20dB/dec-40dB/dec0200.1ωc10ω-60dB/dec0-90180ωγ解:K=10 10G(s)=101 ω=1cc=180oω)c=180o-90o-tg-110-tg-10.05=90o-84.3o-2.9o=2.8o -R(s)-2R(s)-20.5s+15s(0.02s+1)1C(s)
1000000000)dB-20dB/dec12ωc50ω-40dB/dec-60dB/dec10 ω=4.5 2cγ c=180o-90o-tg-1-2-tg-10.02×4.5=90o-66o-2.6o=21.4o500K6-1 已知單位負(fù)反饋系統(tǒng)開環(huán)傳遞函數(shù),G0(s)=s(s+5oK==100vG(s)=
υ=100,4o
L(ω)dB0
L40 L20lgK=40
100dB 0.2 20
0 Lc24 40c°
5 ω
82 ωω=22.4 c
c c-20 L取=5.6oφ- m=45o–12.6o+5.6o=38°1+sinφa=1–sinφm=4.2
900-90
φ0
-40dB/decφcωφmL( )=10lga0 mω=40
-180 γωωm c 12=ma=82T=82=0.01aT1ω=1=23.8aT=0.04aT1G(s)=1+0.04sc 1+0.01sG(s)=G(s)G(s)0 c6-5 已知單位負(fù)反饋系統(tǒng)開環(huán)傳遞函數(shù),
(s)=0
Ks(0.5s+1)(0.2s+1)dBL02640L20ω0.0050cc0.10.525ω-20LcdBL02640L20ω0.0050cc0.10.525ω-20Lc0-90-180-270φφ0cφωγ10vG(s)=0 s(0.5s+1)(0.2s+1)20lg10=20dB10 ω=4.5ccγ=-18°φ=-180o+γ'+Δ=-180o+50o+10o=-120oc取=0.5cL(')=26dB=-20lβ0 c取ω= 1==0.125 cω=0.0051 2G(s)=1+βTs=10s+1c 1+Ts 200s+1G(s)=G(s)G(s)0 c2-14
G(s)
解:
=GG
Δ=1P
=GG
Δ=14 1 1 3
2 2 3 2R(s) )
已知系統(tǒng)+(()=c(s
PGG
曲線,要求繪制校正G(s)
G(s)
3 1 4
4 2 4 4- 1 + 3
L=-GG
L=-GG
C(s)
(G+G
)(G+G)G(s)
X(s)
1 1 3 2 2
= 1 2 3 4 2
(s)性曲線,并寫出開環(huán)s)
(G+G)E(s)= 1
X(s)=G(s)
C(s)=1
3 1 2R(s) 1+G(G+G
E(s)
D(s)3 1 2R(s)R(s)1+-G1G2G C(s)31H2H1R(s)+2-G4GGC(s)256
解:L=GG
L=-GGGHH L=-G1 1 2 2 1 4 5 1 2 3 4G+GGG HH+G-GGG1 2 1 4 35 1 2
4 1 2 4P=GGG Δ=1+G1C(s)
1 2 3G
1 4GG(1+G)R1(s)=1+G
+G
2
H
G-GGG1 4 1 4 5 1
1 2 1 2 4C(s)
GGG(1-GG)
C(s) -GGGGGH1R2(s)
+G
H
2 -GG
R(s)1+G+GG1 2 H-51-GGG2 4 1 4 5 1 2 1
1 2 4 2
4 1 4 5 1 2 1
1 2 4C(s) GGGGHR2(s)=1+G+GG1G4H5H6-G2G-GGG1 4 1 4 5 1 2 1 2 1 2 4設(shè)溫度計(jì)需要在一分鐘內(nèi)指示出響應(yīng)值的并且假設(shè)溫度計(jì)為一階系統(tǒng),求時(shí)間常數(shù)T。如果將溫度計(jì)放在澡盆內(nèi),澡盆的溫度以10oC/min的速度線性變化,解: c(t)=c(∞)98% t=4T=1min T=0.25 r(t)=10tc(t)=10(t-T+e-t/T)=10(T-e-t/T)e(t)=r(t)-c(t)
=lime(t)=10T=2.5sst→∞R1電路如圖,設(shè)系統(tǒng)初始狀態(tài)為零。u R C
=20kΩ
=200kΩ
0 - ∞ u+ c+(1)時(shí)的值.解:
R/RK1 0 =K
T=R
C=0.5
/R=10RCs+1 Ts+1 1 1 01 -t
-2t
8=10(1–e-2t)u(t)=K(1–c
T)=10(1–e )0.8=1–e-2t
e-2t=0.2 t=0.8T時(shí)刻的值.T解: t1
=0.8 R(s)=1
Ke-t/T=4s2R(s)=1s2
u(t)=K(t-T+Te-t/T)=4cR(s)=1 U(s)= K 1=K(1
T+T2- T2 ) 2s3 2
Ts+1
s3 s2 s s+1/Tu(t)=10(c
1t2-0.5t+0.25-0.25e-2t)=1.2
G(s)= 4
s(s+5)解: C(s) 4 1
4 1 1/3 4/3 R(s)=R(s)=
C(s)=s(s+1)(s+4)=s+s+4-s+1c(t)=1+
1e-4t-4e-t 3 3G(s)= 1r p 升時(shí)間t、峰值時(shí)間t、超調(diào)量σ%和調(diào)整時(shí)間tr p
s(s+1)C(s) 1
ω
ω=1 ω
1-ζ2=0.866解: R(s)=
n n d ns2+s+1
ω2=n
=0.5 =t112=60oζpωdt3.14-3.14/3=2.42 t=π=3.14=3.63ζpωdr d 0.866
ω0.866%=π1100%
t= 3=6 t= 4=8 e-1.8
ω ωn nss3-6已知系統(tǒng)的單位階躍響應(yīng):c(t)=1+0.2e-60t-1.2e-10tss系統(tǒng)的閉環(huán)傳遞函數(shù)。系統(tǒng)的阻尼比和無阻尼振蕩頻率。解:C(s)= + - 1 0.2 解:C(s)= + - s s+60s+10s(s+60)(s+10)R(s)=1
ω
ω=24.5s R(s)
nω2n
nζ=1.431.31c(t)0 1.31c(t)0 0.1t解:
ωπ=0.1 /12=ln3.3=1.19
1-ζ2=3.14=31.4p n12 π
n 0.1π1ζ
ζ)2/12
ω=33.4e 2π1-
9.82=1.42-1.42
n
1115.6e
ζ=0.35
G(s)=s(s+ωn
)=s(s+22.7)3-11)s+029+0=3s++821s5穩(wěn)定性。勞斯表如下:s3 1 9s2 20 100s1 4s0100
勞斯表如下:s41185s3816s2165s1s116系統(tǒng)穩(wěn)定。
G(s)=
s0 5 系統(tǒng)穩(wěn)定。K(0.5s+1)3-12(+)(.+s+1)=b解:s4+3s3+4s2+2s+Ks+2K=0=bs4 1 4 s3 3 2+Ks2 b 2K31s1 bs41
10-2K31 3=bK2+10K-20=b41 10-K(K-1.7)(K+11.7)>0K<103-13統(tǒng)穩(wěn)定時(shí)τ值范圍。解:G(s)= 10(1+s解:G(s)= +s+1s s(+s+1)
R(s)-R(s)--s(s+1)τs10C(s)2 (1+1)10b
10(s+1)3=10(1+1)-10>0
s1 b31s0 1031
τ>0R(s)
τ
10 C(s)3-14已知系統(tǒng)結(jié)構(gòu)如圖,試確定系
- s s(s+1)解:G(s)=1(
Φ(s)=
1(s+1)s2(s+1)s3 1
3+2+1s+10110τ-101s2 1
b = >031s1 b31s0 10
τ>1
r(t)=I(t)+2t+t23-16已知單位反饋系統(tǒng)的開環(huán)傳遞函數(shù),
R(s)=
1 2 2+ s s2 s3+ (1)G(s)=
20
K=20p
e = 0 11+=R21ss11+=R21解: (0.1s+1)(0.2s+)
e =∞ss2K=0ae=∞ss
e =∞ss3K=∞ e =0(2)G(s)=
200 =
10 p
ss1 2 2s(s+2)(s+10)
s(0.5s+1)(0.1s+1)
ess2=K=10K=0ae=∞ss
e =∞ss3(3)
10(2s+1) =
(2s+1)
K=∞p
e =0ss1s2(s2+4s+10)
s2(0.1s2+0.4s+1) K
e =0υ ss2K=1a
e=2ss
e =2ss31已知系統(tǒng)結(jié)構(gòu)如圖(1)單位階躍輸入:R(s) - - K1
1C(s)s2ts
=1.8(5%) 確定K1
和值。 K K ω
π
2=0.2ω解:G(s)=s2+sω1
1
n 1nω2=K n
=1.8ζ=0.45
ω= 3 =3.7 K
1τ=0.24s nn1.8*0.45
2=13.71 n(2)r(t)=I(t),t,
1t22 1
K=∞K 1 R(s)=s
e =0ss1解:G(s)=
1 = τ
υ=1
R(s)=1
K=K
=τ=0.24
s(
s+1)
s2
ss2s31 s31
R(s)=1
K=0 a
=∞ss3R(s)--s(s+2)τR(s)--s(s+2)τsKC(s)斜坡輸入的穩(wěn)態(tài)誤差ess
確定K和τ值。解:G(s)= Kτ=ss2+2s+Ks
KK2+τ (s)=s+(2+)s+KK 2+τs( 1 s+1) 2+τω=2+=2*0.7K e=2+=0.25 =31.6n ss KKω2=KKn
0.25K-2 系統(tǒng)結(jié)構(gòu)如圖。
D(s)1
D(s)2r(t)=d(t)=d(t)=I(t)
R(s) E(s)
+F(s)
+ C(s)1 2 -作下的穩(wěn)態(tài)誤差.1解
=lims·
s = 1ssr
1+G(s)F(s)1+G(0)F(0)求
和d(t)同時(shí)作用下的穩(wěn)態(tài)誤差.1
(s)H(s)Ed(s)=
(2)G1
(s)H(s)·D(s)2e =lims
-F(s)
-1 ]1
-[1+F(s)]ssd
1+G(s)F(s)
1+G(s)F(s)
1+G(0)F(0)求d(t)作用下的穩(wěn)態(tài)誤差.1 K F(s)=1G(s)=Kp+s Js -1)e =lim)
-F(s) 1=lims Js
1=0ssd
1+G(s)F(s)
1+(Kp
K 1 ss Js4-1 已知系統(tǒng)的零、極點(diǎn)分布如圖,大致繪制出系統(tǒng)的根軌跡。解:(1)
(3)
900
(4)
600σ 0σ 0(2)0σ(2)0σ600
(6)
(7)
1350
450
(8)
1080
3600σ
σ 0σ 0σ4-2 已知開環(huán)傳遞函數(shù),試用解析法繪制出系統(tǒng)的根軌
G(s)=
K(s+1)解
KKr
s=-1-Kr
r-3+j2r
jω0+j1K=0
s=-2+j0σ0σr→∞
s=0+j1
-2 -1K=r s=-3+j2jωpjωp3p2pz2z101σ解:解:(1)G(s)= jω6.2p4p3jω6.2p4p3p2z-5.67p01-6.2(4)G(s)=開環(huán)零、極點(diǎn)p=0 1
=-3 p2
=-7p4
=-15z1
=-8實(shí)軸上根軌跡段p~p
p~z
p~-∞1 2 3 1 4根軌跡的漸近線n-m=3σ=-3-7-15+8=-5.67180+60o,+3 o180根軌跡與虛軸的交點(diǎn)
分離點(diǎn)和會(huì)合點(diǎn)A(s)=s4+25s3+171s2+315sA(s)'=4s3+75s2+342s+315s4+25s3+171s2+323s+8K=0K=0ω=0 K=638ωr
B(s)=s+8s=-1.4
B(s)'=2s+7r 1 r 2,34-5 (1)(2)增益Kr復(fù)數(shù)特征根的實(shí)部為-2。pp2pz10σ1(Gs ss1)解:
=0
=-1
=-21pp2 z~11 2 1分離點(diǎn)和會(huì)合點(diǎn)s2+4s+2=0
=-3.41s
=-0.59
)ω=01閉環(huán)特征方程式
2 r4-ω2-2(1+Kr
)+2K=0rs2+s+Ks+2K=0
s=-2j
1.41r r(-2+2+(-2j)(1+K)+2K=0
K=3r r r已知系統(tǒng)的開環(huán)傳遞函數(shù),試確定閉環(huán)極點(diǎn)ζKr值。jω1.7s1s3p3-3p2jω1.7s1s3p3-3p2p1-10σ-1.7rs(s+1)(s+3)解:
=0p=-1
=-3p~p p~1 2
1 2 33σ=-1-3=-1.3θ=+60o,+180o3根軌跡的分離點(diǎn):A(s)B'(s)=A'(s)B(s)3s2+8s+3=0s=-0.45 s1
=-2.2 舍去與虛軸交點(diǎn)
ζ=0.5得s1
=-0.37+j0.8s3+4s2+3s+K=0
s=-4+0.37×2=-3.263
rK
ω=0
=|s
||s
+1||s
+3|KKr=12
=±1.7
=3263
2.230.26=1.9r r 2,3 ×(2)
Ks(s+3)(s2+2s+2)rr
=0 1
=-32
3.4
=-1±j p~p1 24-3-1-1=-1.25+45o,4根軌跡的出射角θ=3
- -1 2 4=+π-135o-90o-26.6o=-71.6or與虛軸的交點(diǎn)s(s+3)(s2+2s+2)+K=0s4+5s3+8s2+6s+K=r0rω=0
jωjωp3s11.1-71.6p226.6-2.3 -1.2p1901350σ-1.1p44s3+15s2+16s+6=0解得s=-2.3 ζ=0.5得s=-0.36+j0.75
8(j )=0 K
rω=01
K=|s
1||s
+3||s
+1+j||s
+1-j|r Kr
r 1 1 1 1-5ω3+6ω=0
=8.16r
2,3
=2.92jωjω2.8s1spp332-4 -2p0σ1-2.8試?yán)L制出根軌跡圖。K解:
=0p=-2p
=-4p~p p~1 2
1 2 33-2-4=-23根軌跡的分離點(diǎn):A(s)B'(s)=A'(s)B(s)s=-0.85 s=-3.15 舍去(2) K(2) K阻尼振蕩響應(yīng)的
3+=0
Kr
ω=01r K
K=48ω
=±2.8s=-0.85 KKr=48r
r(4)ζ=0.5
r 2,3s=-0.7+j1.21(3)與虛軸交點(diǎn)s3+6s2+8s+K=0r
s=-6+0.7×2=-4.63K=4.6×2.6×0.6=7.2r5-2已知單位負(fù)反饋系統(tǒng)開環(huán)傳遞函數(shù),當(dāng)輸入信號(hào)r(t)=sin(t+30o),試求系(1)解統(tǒng)Gs)態(tài)1出(s)= 10
10 = 10
10=0.905(s+1)
(s+11)
12+)12+112211 =-tω=-t1111
c(t)=0.9sin(t+24.8o)sI型系統(tǒng)5-2I型系統(tǒng)(1)
750 n-m=3s(s+5)(s+15) Im=0 A)∞)=-9o∞ A)=0 0
ω=∞0 Re解(3)G(s)= 10 Im
ω=0ω=0Im0 Re解ω=0Im0 Re(2s+1)(8s+1)0型系統(tǒng)n-m=2=0 A)=10)=o∞ A)=0 =
ω=∞ω=00
s(s-1)解:I型系統(tǒng)n-m=2=0 A)=∞)=-270o=∞ A)=0 =0
10(s+0.2)s2(s+0.1)(s+15)
II型系統(tǒng)n-m=3 Im=0 A)=∞)=-180o
ω=0
ω=∞0 Re∞ A)=0 )=-270o5-2 G(s)=
750
dB
(3)G(s)= 10
L(ω)dBs(s+5)(s+15)40 -20dB/dec
(2s+1)(8s+1)G(s)= 1 101 20
15
20
-20dB/dec
0-20
1 5-40dB/dec
ωω=0.125ω=0.5
0-20
0.125 0.5 ω-40dB/dec20lgK=20dBω=5ω=15
-60dB/dec
1 20
φ(ω)1 2
ω
)=0o 0 ω=0 )=-90o∞ 0
-90-180-270
∞=
-90-180
10s(s-1)
L(ω)dB40 -20dB/dec1ω=1 20lgK=20dB 2010
-40dB/dec1 ω=0 )=-27o-20∞=
φ(ω)0 ω-90-180dB40200-20-40dB/dec-60dB/dec150.10.2 1ω-40dB/dec0-90-180-270-60dB/decω(7)G(s)=
10(s+0.2) =
1.33(5s+1)s2(s+0.1)(s+15)解:20lgK=2.5dB
s2(10s+1)(0.67s+1)ω=0.1 ω=0.2 ω=151 2 3=0 )=-18o∞)=-270odBdB11020ω20dB/decdB20lgKdB20lgK-20dB/dec10ωcωK=10 20
(b)
20lgK=-200K=0.10G(s)= 10
G(s)=
0.1s -20(0.1s+1) 0
(0.05s+1)(d) K=251
L(ω)dB4820lgK0
-20dB/dec-40dB/dec1050
(c)
K=100
L(ω)dB-20dB/dec0 0.01
100ωG(s)=
251
-60dB/dec
100
-40dB/dec-60dB/dec(c) K=100
G(s)=s(100s+1)(0.01s+1)G(s)=
100
-20dB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工內(nèi)操培訓(xùn)
- 系統(tǒng)性能優(yōu)化策略指南
- 2026年上海市虹口區(qū)初三上學(xué)期一模數(shù)學(xué)試卷和參考答案
- 飛行員英語面試培訓(xùn)課件
- 11月PMI數(shù)據(jù)點(diǎn)評(píng):制造業(yè)PMI邊際改善復(fù)蘇持續(xù)性仍需夯實(shí)
- 飛機(jī)維修技術(shù)課程
- 飛機(jī)的技術(shù)教學(xué)課件
- 2026江蘇蘇州工業(yè)園區(qū)華林幼兒園后勤輔助人員招聘1人參考考試題庫(kù)及答案解析
- 2026安徽蚌埠市固鎮(zhèn)縣楊廟鎮(zhèn)面向全縣選聘村黨組織書記后備力量4人備考考試題庫(kù)及答案解析
- 2026年1月?lián)P州市衛(wèi)生健康系統(tǒng)事業(yè)單位公開招聘專業(yè)技術(shù)人員54人備考考試試題及答案解析
- 2026年廣州中考化學(xué)創(chuàng)新題型特訓(xùn)試卷(附答案可下載)
- 云南省煙草專賣局(公司)2026年畢業(yè)生招聘?jìng)淇碱}庫(kù)(第一批)完整參考答案詳解
- 2026重慶江津區(qū)社區(qū)專職工作人員公開招聘642人考試參考題庫(kù)及答案解析
- 重癥患者營(yíng)養(yǎng)支持指南2025
- 2025-2026學(xué)年貴州省貴陽市多校高一(上)期末物理試卷(含答案)
- 單位電車充電管理制度規(guī)范
- 社區(qū)救援員培訓(xùn)課件
- 2026年讀者文化旅游有限責(zé)任公司社會(huì)招聘參考考試試題及答案解析
- 混凝土擋墻施工工藝方案
- 2025年宿遷市輔警考試真題及答案
- 山東省青島嶗山區(qū)2024-2025學(xué)年上學(xué)期八年級(jí)數(shù)學(xué)期末試題(含答案)
評(píng)論
0/150
提交評(píng)論