版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.用配方法解一元二次方程時,下列變形正確的是().A. B. C. D.2.如圖,某數(shù)學興趣小組將長為,寬為的矩形鐵絲框變形為以為圓心,為半徑的扇形(忽略鐵絲的粗細),則所得扇形的面積為()A. B. C. D.3.一5的絕對值是()A.5 B. C. D.-54.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.5.方程的根是()A. B. C. D.6.如圖,是的直徑,點、、在上.若,則的度數(shù)為()A. B. C. D.7.對于二次函數(shù)y=(x﹣1)2+2的圖象,下列說法正確的是()A.開口向下 B.對稱軸是x=﹣1 C.與x軸有兩個交點 D.頂點坐標是(1,2)8.有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?若設(shè)每輪傳染中平均一個人傳染了x個人,那么x滿足的方程是()A. B. C. D.9.如圖,四邊形ABCD是菱形,對角線AC,BD交于點O,,,于點H,且DH與AC交于G,則OG長度為A. B. C. D.10.如圖,空地上(空地足夠大)有一段長為的舊墻,小敏利用舊墻和木欄圍成一個矩形菜園,已知木欄總長,矩形菜園的面積為.若設(shè),則可列方程()A. B.C. D.11.如圖,AB是半圓O的直徑,弦AD、BC相交于點P,若∠DPB=α,那么等于()A.tanα B.sina C.cosα D.12.有一組數(shù)據(jù):2,﹣2,2,4,6,7這組數(shù)據(jù)的中位數(shù)為()A.2 B.3 C.4 D.6二、填空題(每題4分,共24分)13.如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1,它與x軸交于兩點O,A;將C1繞點A旋轉(zhuǎn)180°得到C2,交x軸于A1;將C2繞點A1旋轉(zhuǎn)180°得到C3,交x軸于點A2......如此進行下去,直至得到C2018,若點P(4035,m)在第2018段拋物線上,則m的值為________.14.已知二次函數(shù)的圖象與x軸有交點,則k的取值范圍是__________15.從﹣3,﹣2,﹣1,0,1,2這6個數(shù)中任意取出一個數(shù)記作k,則既能使函數(shù)y=的圖象經(jīng)過第一、第三象限,又能使關(guān)于x的一元二次方程x2﹣kx+1=0有實數(shù)根的概率為_____.16.如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸的正半軸上的點A'處,若AO=OB=2,則圖中陰影部分面積為_____.17.如圖,反比例函數(shù)的圖象位于第一、三象限,且圖象上的點與坐標軸圍成的矩形面積為2,請你在第三象限的圖象上取一個符合題意的點,并寫出它的坐標______________.18.如圖,正方形內(nèi)接于,正方形的邊長為,若在這個圓面上隨意拋一粒豆子,則豆子落在正方形內(nèi)的概率是_____________.三、解答題(共78分)19.(8分)如圖,是的角平分線,延長到,使.(1)求證:.(2)若,,,求的長.20.(8分)如圖,是的直徑,是的弦,延長到點,使,連結(jié),過點作,垂足為.(1)求證:;(2)求證:為的切線.21.(8分)某日王老師佩戴運動手環(huán)進行快走鍛煉兩次鍛煉后數(shù)據(jù)如下表,與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的倍.設(shè)王老師第二次鍛煉時平均步長減少的百分率為.注:步數(shù)平均步長距離.項目第一次鍛煉第二次鍛煉步數(shù)(步)①_______平均步長(米/步)②_______距離(米)(1)根據(jù)題意完成表格;(2)求.22.(10分)關(guān)于的方程有實根.(1)求的取值范圍;(2)設(shè)方程的兩實根分別為且,求的值.23.(10分)如圖,在正方形中,對角線、相交于點,為上動點(不與、重合),作,垂足為,分別交、于、,連接、.(1)求證:;(2)求的度數(shù);(3)若,,求的面積.24.(10分)如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點M是AB邊的中點.(1)如圖1,若CM=,求△ACB的周長;(2)如圖2,若N為AC的中點,將線段CN以C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)60°,使點N至點D處,連接BD交CM于點F,連接MD,取MD的中點E,連接EF.求證:3EF=2MF.25.(12分)已知有一個二次函數(shù)由的圖像與x軸的交點為(-2,0),(4,0),形狀與二次函數(shù)相同,且的圖像頂點在函數(shù)的圖像上(a,b為常數(shù)),則請用含有a的代數(shù)式表示b.26.如圖,點是的內(nèi)心,的延長線交于點,交的外接圓于點,連接,過點作直線,使;(1)求證:直線是的切線;(2)若,,求.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)配方法的原理,湊成完全平方式即可.【詳解】解:,,,故選D.【點睛】本題主要考查配方法的掌握,關(guān)鍵在于一次項的系數(shù)等于2倍的二次項系數(shù)和常數(shù)項的乘積.2、B【分析】根據(jù)已知條件可得弧BD的弧長為6,然后利用扇形的面積公式:計算即可.【詳解】解:∵矩形的長為6,寬為3,
∴AB=CD=6,AD=BC=3,
∴弧BD的長=18-12=6,故選:B.【點睛】此題考查了扇形的面積公式,解題的關(guān)鍵是:熟記扇形的面積公式3、A【解析】試題分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣5到原點的距離是5,所以﹣5的絕對值是5,故選A.4、A【分析】列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:
紅
紅
紅
綠
綠
紅
﹣﹣﹣
(紅,紅)
(紅,紅)
(綠,紅)
(綠,綠)
紅
(紅,紅)
﹣﹣﹣
(紅,紅)
(綠,紅)
(綠,紅)
紅
(紅,紅)
(紅,紅)
﹣﹣﹣
(綠,紅)
(綠,紅)
綠
(紅,綠)
(紅,綠)
(紅,綠)
﹣﹣﹣
(綠,綠)
綠
(紅,綠)
(紅,綠)
(紅,綠)
(綠,綠)
﹣﹣﹣
∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.5、D【分析】根據(jù)因式分解法,可得答案.【詳解】解:解得:,,故選:.【點睛】本題考查了解一元二次方程,因式分解是解題關(guān)鍵.注意此題中方程兩邊不能同時除以,因為可能為1.6、C【分析】連接AD,BD,由圓周角定理可得∠ABD=25°,∠ADB=90°,從而可求得∠BAD=65°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=115°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=25°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-25°=65°,∴∠BCD=180°-65°=115°.故選C【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關(guān)鍵.7、D【解析】試題解析:二次函數(shù)y=(x-1)2+2的圖象開口向上,頂點坐標為(1,2),對稱軸為直線x=1,拋物線與x軸沒有公共點.故選D.8、D【分析】先由題意列出第一輪傳染后患流感的人數(shù),再列出第二輪傳染后患流感的人數(shù),即可列出方程.【詳解】解:設(shè)每輪傳染中平均一個人傳染了x個人,
則第一輪傳染后患流感的人數(shù)是:1+x,
第二輪傳染后患流感的人數(shù)是:1+x+x(1+x),
因此可列方程,1+x+x(1+x)=1.
故選:D.【點睛】本題主要考查一元二次方程的應用,找到等量關(guān)系是解題的關(guān)鍵.9、B【解析】試題解析:在菱形中,,,所以,,在中,,因為,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.10、B【分析】設(shè),則,根據(jù)矩形面積公式列出方程.【詳解】解:設(shè),則,由題意,得.故選.【點睛】考查了由實際問題抽象出一元二次方程,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.11、C【分析】連接BD得到∠ADB是直角,再利用兩三角形相似對應邊成比例即可求解.【詳解】連接BD,由AB是直徑得,∠ADB=.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故選C.12、B【分析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.【詳解】解:將這組數(shù)據(jù)排序得:﹣2,2,2,4,6,7,處在第3、4位兩個數(shù)的平均數(shù)為(4+2)÷2=3,故選:B.【點睛】考查中位數(shù)的意義和求法,找一組數(shù)據(jù)的中位數(shù)需要將這組數(shù)據(jù)從小到大排列后,處在中間位置的一個數(shù)或兩個數(shù)的平均數(shù)即為中位數(shù).二、填空題(每題4分,共24分)13、-1【解析】每次變化時,開口方向變化但形狀不變,則a=1,故開口向上時a=1,開口向下時a=-1;與x軸的交點在變化,可發(fā)現(xiàn)規(guī)律拋物線Cn與x軸交點的規(guī)律是(2n-2,0)和(2n,0),由兩點式y(tǒng)=a(x-x1)(x-x2)【詳解】由拋物線C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得x1∴與x軸的交點為O(0,0),A(2,0).拋物線C2的開口向上,且與x軸的交點為∴A(2,0)和A1(4,0),則拋物線C2:y=(x-2)(x-4);拋物線C3的開口向下,且與x軸的交點為∴A1(4,0)和A2(6,0),則拋物線C3:y=-(x-4)(x-6);拋物線C4的開口向上,且與x軸的交點為∴A2(6,0)和A3(8,0),則拋物線C4:y=(x-6)(x-8);同理:拋物線C2018的開口向上,且與x軸的交點為∴A2016(4034,0)和A2017(4036,0),則拋物線C2018:y=(x-4034)(x-4036);當x=4035時,y=1×(-1)-1.故答案為:-1.【點睛】本題考查了二次函數(shù)的性質(zhì)及旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是求出第2018段拋物線的解析式.14、k≤4且k≠1【分析】根據(jù)二次函數(shù)的定義和圖象與x軸有交點則△≥0,可得關(guān)于k的不等式組,然后求出不等式組的解集即可.【詳解】解:根據(jù)題意得k?1≠0且△=22?4×(k?1)×1≥0,解得k≤4且k≠1.故答案為:k≤4且k≠1.【點睛】本題考查了拋物線與x軸的交點問題:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2?4ac決定拋物線與x軸的交點個數(shù):△>0時,拋物線與x軸有2個交點;△=0時,拋物線與x軸有1個交點;△<0時,拋物線與x軸沒有交點.15、.【分析】確定使函數(shù)的圖象經(jīng)過第一、三象限的k的值,然后確定使方程有實數(shù)根的k值,找到同時滿足兩個條件的k的值即可.【詳解】解:這6個數(shù)中能使函數(shù)y=的圖象經(jīng)過第一、第三象限的有1,2這2個數(shù),∵關(guān)于x的一元二次方程x2﹣kx+1=0有實數(shù)根,∴k2﹣4≥0,解得k≤﹣2或k≥2,能滿足這一條件的數(shù)是:﹣3、﹣2、2這3個數(shù),∴能同時滿足這兩個條件的只有2這個數(shù),∴此概率為,故答案為:.16、.【分析】根據(jù)等腰三角形的性質(zhì)求出AB,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得BA′=AB,然后求出∠OA′B=30°,再根據(jù)直角三角形兩銳角互余求出∠A′BA=60°,即旋轉(zhuǎn)角為60°,再根據(jù)S陰影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面積公式列式計算即可得解.【詳解】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=4,BC=2,∵△ABC繞點B順時針旋轉(zhuǎn)點A在A′處,∴BA′=AB,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋轉(zhuǎn)角為60°,S陰影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′==.故答案為:.【點睛】本題考查了陰影部分面積的問題,掌握等腰直角三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、扇形面積公式是解題的關(guān)鍵.17、滿足的第三象限點均可,如(-1,-2)【分析】因為過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積S是個定值,即S=|k|.【詳解】解:∵圖象上的點與坐標軸圍成的矩形面積為2,
∴|k|=2,
∴反比例函數(shù)y=的圖象在一、三象限,k>0,
∴k=2,
∴此反比例函數(shù)的解析式為.∴第三象限點均可,可?。寒攛=-1時,y=-2綜上所述,答案為:滿足的第三象限點均可,如(-1,-2)【點睛】本題考查的是反比例函數(shù)系數(shù)k的幾何意義,即過反比例函數(shù)圖象上任意一點向兩坐標軸引垂線,所得矩形的面積為|k|.18、【分析】在這個圓面上隨意拋一粒豆子,落在圓內(nèi)每一個地方是均等的,因此計算出正方形和圓的面積,利用幾何概率的計算方法解答即可.【詳解】解:因為正方形的邊長為2cm,則對角線的長為cm,所以⊙O的半徑為cm,直徑為2cm,⊙O的面積為2πcm2;正方形的面積為4cm2因為豆子落在圓內(nèi)每一個地方是均等的,所以P(豆子落在正方形ABCD內(nèi))=.故答案為:.【點睛】此題主要考查幾何概率的意義:一般地,如果試驗的基本事件為n,隨機事件A所包含的基本事件數(shù)為m,我們就用來描述事件A出現(xiàn)的可能性大小,稱它為事件A的概率,記作P(A),即有
P(A)=.三、解答題(共78分)19、(1)見解析,(2)BC=3.【分析】(1)由AD是角平分線可得∠BAD=∠CAD,根據(jù)AC=CE可得∠CAD=∠E即可證明∠BAD=∠E,又因為對頂角相等,即可證明△ABD∽△ECD;(2)根據(jù)相似三角形的性質(zhì)可得CD的長,進而可求出BC的長.【詳解】(1)∵是的角平分線,∴.∵,∴.∴.又∵∠ADB=∠CDE∴.(2)∵,∴.∵,∴.∴.∴.【點睛】本題考查了相似三角形的判定與性質(zhì),相似三角形的對應邊成比例,熟練掌握判定定理是解題關(guān)鍵.20、(1)見解析;(2)見解析【分析】(1)連接AD,則AD⊥BC,再由已知,可推出是的垂直平分線,再根據(jù)垂直平分線的性質(zhì)即可得出結(jié)論.(2)連接OD,證明OD⊥DE即可.根據(jù)三角形中位線定理和平行線的性質(zhì)可以證明.【詳解】解:(1)證明:連接∵是的直徑∴又∴是的垂直平分線(2)連接∵點、分別是的中點∴又∴∴為的切線;【點睛】本題考查了直徑所對的圓周角是直角,垂直平分線的性質(zhì),切線的判定等,準確作出輔助線是解題的關(guān)鍵.21、(1)①,②;(2)的值為.【分析】(1)①直接利用王老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的3倍,得出第二次鍛煉的步數(shù);②利用王老師第二次鍛煉時平均步長減少的百分率為x,即可表示出第二次鍛煉的平均步長(米/步);(2)根據(jù)題意第二次鍛煉的總距離這一等量關(guān)系,建立方程求解進而得出答案.【詳解】解:(1)①根據(jù)題意可得第二次鍛煉步數(shù)為:,②第二次鍛煉的平均步長(米/步)為:;(2)由題意,得.解得(舍去),.答:的值為.【點睛】本題主要考查一元二次方程的應用,根據(jù)題意正確表示出第二次鍛煉的步數(shù)與步長是解題關(guān)鍵.22、(1)m≤1;(2)m=.【分析】(1)根據(jù)一元二次方程方程有實根的條件是列出不等式求解即可;(2)根據(jù)根與系數(shù)的關(guān)系可得,再根據(jù),求出的值,最后求出m的值即可.【詳解】解:根據(jù)題意得(2)由根與系數(shù)的關(guān)系可得【點睛】本題考查了一元二次方程有根的條件及根與系數(shù)的關(guān)系,根據(jù)題意列出等式或不等式是解題的關(guān)鍵.23、(1)見解析;(2);(3)3【分析】(1)結(jié)合正方形的性質(zhì)利用ASA即可證明;(2)由兩組對應角相等可證,由相似三角形對應線段成比例再等量代換可得,由兩邊對應成比例及其夾角相等的兩個三角形相似可證,由相似三角形對應角相等可得的度數(shù);(3)結(jié)合相似三角形對應角相等及直角三角形的性質(zhì)根據(jù)兩組對應角相等的兩個三角形相似可證,由其對應線段成比例的性質(zhì)可得的值,由三角形面積公式計算即可.【詳解】解:(1)四邊形是正方形,,,,,,(2),,,,,,(3),,即,,,即,,,,,.【點睛】本題綜合考查了正方形與三角形的綜合,涉及了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、直角三角形的性質(zhì),靈活的利用相似三角形的判定與性質(zhì)是解題的關(guān)鍵.24、(1);(2)證明見解析.【分析】(1)根據(jù)直角三角形中,斜邊上的中線等于斜邊的一半可得AB的長度,根據(jù)30°所對的直角邊等于斜邊的一半可得BC的長度,最后根據(jù)勾股定理可得AC的長度,計算出周長即可;(2)如圖所示添加輔助線,由(1)可得ΔBCM是等邊三角形,可證ΔBCP≌ΔCMN,進而證明ΔBPF≌ΔDCF,根據(jù)E是MD中點,得出,根據(jù)BPMC,得出,進而得出3EF=2MF即可.【詳解】解:(1)在Rt△ABC中,∠ACB=90°,點M是AB邊的中點,∴∴AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 危貨車安全生產(chǎn)管理制度
- 北京餐飲安全生產(chǎn)制度
- 化工安全生產(chǎn)巡檢制度
- 蛋雞飼養(yǎng)場生產(chǎn)管理制度
- 2026年財經(jīng)知識寶典注冊會計師考試習題集
- 2026年金融投資策略分析題市場風險評估與應對策略
- 2026年金融科技發(fā)展趨勢金融科技產(chǎn)品分析題庫
- 2026年網(wǎng)絡(luò)安全滲透測試與防御考題
- 2026年電子商務(wù)實戰(zhàn)電子商務(wù)師中級實務(wù)操作模擬題
- 公路養(yǎng)護工技術(shù)工人知識考試題庫(附含答案)
- 大數(shù)據(jù)驅(qū)動下的塵肺病發(fā)病趨勢預測模型
- 炎德英才大聯(lián)考雅禮中學2026屆高三月考試卷英語(五)(含答案)
- 【道 法】期末綜合復習 課件-2025-2026學年統(tǒng)編版道德與法治七年級上冊
- 2025-2026學年仁愛科普版七年級英語上冊(全冊)知識點梳理歸納
- TNAHIEM 156-2025 口內(nèi)數(shù)字印模設(shè)備消毒滅菌管理規(guī)范
- 頂棚保溫施工組織方案
- ISO13485:2016醫(yī)療器械質(zhì)量管理手冊+全套程序文件+表單全套
- 學校6S管理培訓
- DB15-T 4031-2025 建設(shè)項目水資源論證表編制導則
- 2025-2030國學啟蒙教育傳統(tǒng)文化復興與商業(yè)模式探索報告
- 2025年事業(yè)單位考試(醫(yī)療衛(wèi)生類E類)職業(yè)能力傾向測驗試卷及答案指導
評論
0/150
提交評論