版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省大興安嶺地區(qū)普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值
2.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
3.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
4.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點(diǎn)的個(gè)數(shù)為
A.3B.2C.1D.0
5.當(dāng)α<x<b時(shí),f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線(xiàn)段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸
6.
A.-e
B.-e-1
C.e-1
D.e
7.
8.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。
A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度
9.下列命題中正確的有().A.A.
B.
C.
D.
10.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
11.A.A.3
B.5
C.1
D.
12.
A.0
B.cos2-cos1
C.sin1-sin2
D.sin2-sin1
13.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
14.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
15.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
16.下列等式成立的是()。
A.
B.
C.
D.
17.
18.()。A.3B.2C.1D.0
19.若,則下列命題中正確的有()。A.
B.
C.
D.
20.
二、填空題(20題)21.
22.曲線(xiàn)y=x3-3x2-x的拐點(diǎn)坐標(biāo)為_(kāi)___。
23.
24.
25.
26.
27.
28.y=lnx,則dy=__________。
29.過(guò)坐標(biāo)原點(diǎn)且與平面2x-y+z+1=0平行的平面方程為_(kāi)_____.
30.
31.
32.
33.
34.
35.
36.
37.
38.f(x)=sinx,則f"(x)=_________。
39.
40.
三、計(jì)算題(20題)41.
42.求微分方程y"-4y'+4y=e-2x的通解.
43.設(shè)拋物線(xiàn)Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線(xiàn)與x軸所圍成的平面區(qū)域內(nèi),以線(xiàn)段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
44.
45.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
47.求曲線(xiàn)在點(diǎn)(1,3)處的切線(xiàn)方程.
48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線(xiàn)在點(diǎn)(1,1)處的切線(xiàn)l的方程.
49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
50.
51.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
52.求微分方程的通解.
53.
54.
55.
56.
57.證明:
58.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
60.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線(xiàn)的凹凸區(qū)間和拐點(diǎn).
四、解答題(10題)61.
62.
63.
64.求由曲線(xiàn)y2=(x-1)3和直線(xiàn)x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.
65.
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)函數(shù)
=___________。
六、解答題(0題)72.
參考答案
1.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
2.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
3.B
4.C本題考查了零點(diǎn)存在定理的知識(shí)點(diǎn)。由零點(diǎn)存在定理可知,f(x)在(a,b)上必有零點(diǎn),且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個(gè)零點(diǎn)。
5.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線(xiàn)y=f'(x)在(α,b)內(nèi)為凹,因此選A。
6.C所給問(wèn)題為反常積分問(wèn)題,由定義可知
因此選C.
7.D
8.D
9.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).
可知應(yīng)選B.通常可以將其作為判定級(jí)數(shù)發(fā)散的充分條件使用.
10.D本題考查了函數(shù)的極值的知識(shí)點(diǎn)。
11.A本題考查的知識(shí)點(diǎn)為判定極值的必要條件.
故應(yīng)選A.
12.A由于定積分
存在,它表示一個(gè)確定的數(shù)值,其導(dǎo)數(shù)為零,因此選A.
13.A對(duì)于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對(duì)于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對(duì)于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對(duì)于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).
14.C
15.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
16.C
17.A
18.A
19.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
20.B
21.e1/2e1/2
解析:
22.(1,-1)
23.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
若利用極限公式
如果利用無(wú)窮大量與無(wú)窮小量關(guān)系,直接推導(dǎo),可得
24.0
25.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
f'(x)=(x2)'=2x,
f"(x)=(2x)'=2.
26.1
27.
28.(1/x)dx
29.已知平面的法線(xiàn)向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.
30.0
31.
32.
解析:
33.(2x+cosx)dx.
本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
34.
35.
本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.
考生只需熟記導(dǎo)數(shù)運(yùn)算的法則
36.x2+y2=Cx2+y2=C解析:
37.
38.-sinx
39.2.
本題考查的知識(shí)點(diǎn)為二次積分的計(jì)算.
由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二次積分計(jì)算可知
40.
41.
42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
43.
44.由一階線(xiàn)性微分方程通解公式有
45.
46.由等價(jià)無(wú)窮小量的定義可知
47.曲線(xiàn)方程為,點(diǎn)(1,3)在曲線(xiàn)上.
因此所求曲線(xiàn)方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線(xiàn)y=f(x)在點(diǎn)
(x0,fx0))處存在切線(xiàn),且切線(xiàn)的斜率為f′(x0).切線(xiàn)方程為
48.
49.函數(shù)的定義域?yàn)?/p>
注意
50.
則
51.
52.
53.
54.
55.
56.
57.
58.由二重積分物理意義知
59.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學(xué)教師科研與學(xué)術(shù)交流制度
- 企業(yè)員工培訓(xùn)與素質(zhì)發(fā)展制度
- 交通信號(hào)燈設(shè)置與維護(hù)制度
- 2026年建筑工程施工安全法規(guī)與職業(yè)操守考核題集
- 2026年兒童安全教育內(nèi)容與策略試題
- 2026年綠色生產(chǎn)與環(huán)保意識(shí)考核題
- 孕婦無(wú)創(chuàng)產(chǎn)前檢測(cè)知情同意書(shū)
- 九年級(jí)語(yǔ)文上冊(cè)期末提升卷(人教部編培優(yōu))
- 傳聲港茶葉品牌新媒體推廣白皮書(shū)
- 檢驗(yàn)科實(shí)驗(yàn)室被盜的應(yīng)急處理制度及流程
- 江蘇省鹽城市大豐區(qū)四校聯(lián)考2025-2026學(xué)年七年級(jí)上學(xué)期12月月考?xì)v史試卷(含答案)
- 2022-2023學(xué)年北京市延慶區(qū)八年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- 2026年黑龍江農(nóng)業(yè)經(jīng)濟(jì)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試參考題庫(kù)附答案詳解
- 文化IP授權(quán)使用框架協(xié)議
- 2024年廣西壯族自治區(qū)公開(kāi)遴選公務(wù)員筆試試題及答案解析(綜合類(lèi))
- 湖北煙草專(zhuān)賣(mài)局招聘考試真題2025
- 人教部編五年級(jí)語(yǔ)文下冊(cè)古詩(shī)三首《四時(shí)田園雜興(其三十一)》示范公開(kāi)課教學(xué)課件
- AI領(lǐng)域求職者必看美的工廠(chǎng)AI面試實(shí)戰(zhàn)經(jīng)驗(yàn)分享
- 4.2《揚(yáng)州慢》課件2025-2026學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)
- 鄉(xiāng)鎮(zhèn)應(yīng)急管理培訓(xùn)
- DB63∕T 2215-2023 干法直投改性劑瀝青路面施工技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論