版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第四屆“認(rèn)證杯”數(shù)學(xué)中參賽隊伍的參賽隊號:(請各個參賽隊提前填寫好競賽統(tǒng)一編號(由競賽送至評委團(tuán)前編號競賽評閱編號(由競賽評委團(tuán)評閱前進(jìn)行編號 ActivitiesontheWeb:Thenumberofterrorattacksisincreasingyearbyyear.OnNovember13,2015,theterroristattackthattookceinPariscausedhundredsofdeaths.Thehazardsofcyberterrorismhave emoreandmoreserious.TheUSAhasenactedanumberoflawsaimedatthepreventionofcyberterrorism,suchas“USAPATRIOTAct”.Itisnecessarytoestablishamodelforthepreventionofterroristnetworkspreadandtomonitorandfindthepeoplewithatendencytoterrorism.TheInternetbehaviorysisandriskassessmentmodel(IBARA)wasestablishedfortheInternettoassesstheinternetbehaviorsofthosepeoplewhoaremonitored.Inthispaper,basedonIBARA,wenotonlyresearchtherelationshipbetweenpeople’sInternetbehaviorandtheirpossibleterroristtendency,butalsoyzeanddiscusstherelativetativeriskindexofindividualterrorismtendencyandtherelevantstrategiestopreventterroristattacks.Firstly,theInternetbehaviorwasdividedintotwoparts:Webtextandimage.Thecomplexvectorspaceofwordfrequencyysisalgorithmwasadoptedtoestablishthe tendencyofterrorismriskindexsubmodule(PTTRISM)whichcanpredictpeople’stendencytoterrorism.InPTTRISM,thispaperyzesthebehaviorofindividualWebtextusingthekeywordextractiontechniqueandfrequencyysistechnique.Accordingtotheysisresults,it’sgiventhevalueoftheriskindexofindividualterrorisminthispaper.UsingthePTTRISMtoyzethedatasample,wehaddrawnaconclusionthatmostpeoplewhohavebeenaccesstotheterrorism-relatedinformationarenotlikelyto epotentialterrorists.ThePTTRISMcouldcalculatepeople’sriskindexaboutthetendencytoterrorismthroughyzingInternetbehavior.Secondly,infact,theobjectofnetworkmonitoringisnota butalargenumberofpeople,whichmakestomonitoringdatatoolargeandcomplex.Inordertofacilitatetherapidandefficientclassificationandysisofbigdata,abigdataclusteringstatisticssubmodule(MDCSSM)isestablishedbasedonthetechniqueofdensity-basedclustering.Atthesametime,inordertoshortenthecomputingtimeoftheMDCSSM,inthispaperisadoptedthestandardparticleswarmoptimization(PSO)withtheweight-shrinkfactor.Itrealizedtheeffective,fastandautomaticclusteringysisofdatasets.Validationofthesubmodelusingthedata,Themodelcanbeusedtoyzealargeamountofdata.Duetosacristyofthemonitoringdata,weutilizesomefrequently-testedpublicdatasets,“Iris”,“Glass”,“Wine”and“Aggregation”torecethemonitoringdataandverifytheclusteringalgorithm.Theclusteringresultsdemonstratethattheclusteringalgorithmcancategorizethemonitoringdatasetsinaneffective,fastandautomaticmanner.Finally,Weproposesomesuggestionsto ObamaaboutfightingagainstterrorismasfollowsbasedonIBARA:Putintomoreresourcesintermsofnetworkagainstterrorism.YoucouldbuildUserOnlineMonitoringSystemofBehaviorandPsychologicaltomonitorandassessthebehavioroftheEstablishInformationsecurityevaluationsystemtoweakenandevenpreventtheterroristpropagandathroughthenetwork.Strengthenpublicanti-terrorismeducation,raisepublicawarenessofanti-Duetothetimeconstraints,themodelstillhassomedefectswhichneedtobeimproved.InthePTTRIsubmodule,factorsofvoiceandimagefilesarenotconsidered.IntheMDCSsubmodule,theselectionofadaptivefunctioninClusteringysiscouldbefurtherimproved.Withthefurtherimprovementofthemodel,wewillgetmoreaccurateresults.:PSO,wordfrequencyysisalgorithm,density-basedclustering,terrorism,Internetbehavior TheDescriptionofthe OurApproximationtheWholeCourseofDataMiningToterroristson TheDifferencesinWeightsandSizesofAvailable Terms,DefinitionsandSymbolsin Assumptionsin TheModelofTerrorism-RelatedWebsiteBrowsingandVectorSpaceModelsofLexical TheModelofRisk SolutionsandResultsfor StrengthandWeaknessin Extra Additional TheFoundationofMDCSSMtoCategorizeBig TheResultsof Strengthand Conclusionsofthe MethodsUsedinour Applicationsofour ProposaltoFighting Inordertoindicatetheoriginofweb-relatedterrorismproblems,thefollowingbackgroundisworthmentioning.TerroristcellsareusingtheInternetinfrastructuretoexchangeinformationandrecruitnewmembersandsupporters[1][2](Lemos2002;Kelley2002).Forexample,high-speedInternetconnectionswereusedintensivelybymembersoftheinfamous‘HamburgCell’thatwaslargelyresponsibleforthepreparationoftheSeptember11attacksagainsttheUnitedStates[3](Corbin2002).ThisisonereasonforthemajoreffortmadebylawenmentagenciesaroundtheworldingatheringinformationfromtheWebaboutterror-relatedactivities.ItisbelievedthatthedetectionofterroristsontheWebmightpreventfurtherterroristattacks[2](Kelley2002).OnewaytodetectterroristactivityontheWebistoeavesdroponalltrafficofWebsitesassociatedwithterroristorganizationsinordertodetecttheaccessingusersbasedontheirIPaddress.Unfortunayitisdifficulttomonitorterroristsites[3](suchas‘AzzamPublications’(Corbin2002)sincetheydonotusefixedIPaddressesandURLs.ThegeographicallocationsofWebservershostingthosesitesalsochangefrequentlyinordertopreventsuccessfuleavesdrop. ethisproblem,lawenmentagenciesaretryingtodetectterroristsbymonitoringallISPstraffic[4](Ingram2001),thoughprivacyissuesraisedstillpreventrelevantlawsfrombeingend.Figure1:theannualnumberofterrorists’attackfrom1968toTheDescriptionoftheOurApproximationtheWholeCourseofDataMiningToterroristsonwebsitesHowoftendoestheinternetuserwhoismonitoredvisitthewebsitethatcontainsterrorizedinformationandpropagandaofterrorism.Thelexicalmeaningofcontentsoftheirs,chats,postviewsandtextfilesbeingdownloaded.Asforotherformatsoffiles,suchass,imagesandaudios,thetechniquesoftheimagedescriptionandvoicerecognitionareusedasatooltodetecttheterrorists.Forcategorizingthemonitoringdata,theclustertechniquesareadoptedtosectdatainaneffective,fastandautomaticmanner.PresentsomeusefulsuggestionstoObamaforfightingTheDifferencesinWeightsandSizesofAvailableDuetodifferencesbetweenthecollecteddatasets,it’squitenecessarytopreprocesstheavailabledata,Suchastextdatasets,numericaldatasets,imagedatasetsandevenvoicedatasets.ThePreprocessofTextData:removenon-alphabeticalcharactersfromthetextdatasetandputtheminto cellstructures.ThePreprocessofImageData:removenon-imageryinformationfromtheimagedatasetsandconverttheRGBimagesintothegray-valueimages.Iftheimagedatasetsarepollutedbynoises,it’squitenecessarytodenoiseimagebeforeyzingtherelevantinformation.ThePreprocessofVoice:iftheaudiodatasetsarepollutedbynoises,it’saneedtoimplementaudio-denoisingstepsbeforediggingouttheauditoryinformation.ThePreprocessofNumericalDataset:Duetoexistenceofdifferencesbetweendatasamplesinunitsandmagnitudes,thenumericaldatasetneedstobenormalizedandInthispaperanewmethodologytodetectusersaccessingterroristrelatedinformationbyFrequency-ysisTechniques,VectorSpaceModelsofLexicalMeaning[5],ImageDescription[6]andVoiceRecognition[7],DataCluster[8].Terms,DefinitionsandSymbolsinThesignsanddefinitionsaremostlygeneratedfromourmodelsinthisRistheriskindex,whichdenotestheriskdegreethattheInternetuser
PtP
isthedegreethatthetextcontentsthattheInternetuserinvolvesrelatedtoterrorismduringthetimeintervalPtimageisthedegreethatimagesthattheInternetuserbrowsesanddownloadarerelatedtoterrorismduringthetimeintervalt.PtaudioisthedegreethataudiosthattheInternetuserlistenstoanddownloadarerelatedtoterrorismduringthetimeintervalt.wi,jistheweightfactorofvectorspaceqAssumptionsinThemaindesigncriteriafortheproposedmethodologyTrainingthedetectionalgorithmshouldbebasedonthecontentofexistingterroristsitesandknownterroristtrafficontheWeb.Detectionshouldbecarriedoutinreal-time.Thisgoalcanbeachievedonlyifterroristinformationinterestsarepresentedinacompactmannerforefficientprocessing.Thedetectionsensitivityshouldbecontrolledbyuser-definedparameterstoenablecalibrationofthedesireddetectionperformance.Allinformationrelatedtoterrorismisnotencryptedbyencipheredalgorithms,suchasRSAAllinformationthatcanbemonitoredispresentedbyimages,audiosandNeglectthesocialattributesofthemonitored andonlyconsiderthenetworkpropertiesSpaceModelsofLexicalMeaningOnemajorissueinthismodelistherepresentationoftextualcontentofWebpages.Morespecifically,thereisaneedtorepresentthecontentofterror-relatedpagesasagainstthecontentofacurrentlyaccessedpageinordertoefficientlycomputethesimilaritybetweenthem[9].Thisstudywillusethevector-spacemodelcommonlyusedinInformationRetrievalapplicationsforrepresentingterrorists’interestsandeachaccessedWebpage.Inthevector-spacemodel,theweightwi,jassociatedwithapair(ki,dj)ispositiveandnon-binary.Further,theindextermsinthequeryqarealsoweighted.Letwi,qbetheweightassociatedwiththepair(ki,q)wherewi,q0.Then,thequeryvectorq(w1,q,w2,q,,wt,q)isdefinedaswheretisthetotalnumberofindex.Thevectorfora djisrepresentedbydj(w1,j,w2,j,,wt,j).Thevectormodelproposestoevaluatethedegreeofsimilarityofthe djwithregardtothequeryqasthecorrelationbetweenthevectorsdjandqThiscanbemeasuredbythecosineoftheanglebetweenthesetwovectorsddqsim
(3-1- Whered and arethenormsofarethenormsof andvectors.Inthevectorspacemodel,thefrequencyofatermkiinside d
i,
N
(3-1-Thenormalizedfrequencyof ki djisgiven freqi, (3-1-i,jmax(freqi,Thebestknownterm-weightingschemesuseweightswhicharegivenwi,jfi,jlog(freqi,j (3-1-InthispapereachWebpageinconsideredasaandisrepresentedasavector.Theterrorists’interestsarerepresentedbyseveralvectorswhereeachvectorrelatestoadifferenttopicofinterest.ThequeryofthemethodologydefinesandrepresentsthetypicalbehaviorofterroristusersbasedonthecontentoftheirWebactivities.ThequeryisbasedonasetofWebpagesthatweredownloadedfromterroristrelatedsitesandisthemaininputofthedetectionalgorithm.ItisassumedthatitispossibletocollectWebpagesfromterror-relatedsites.ThecontentofthecollectedpagesistheinputtotheVectorGeneratormodulethatconvertsthepagesintovectorsofweightedterms[10](eachpageisconvertedtoonevector).Inordertodefinethedegreethattheinternetuserbrowsestheterrorism-relatedwebsitesduringthetimeintervalt,theformulab(m)isdefinedbythefunctiontheinternetuserbehaveslikeapotentialterroristwhenbrowsingthewebsitemaswhere(x)
b(m)simxPtext
(3-1-(3-1-Inthispaper,weadopt0.5asthevalueofthreshold.Thequeryinthispaperislistedinthetablebelow.Detailsof1Bomb2345Attackto6cStateofIraqandalShams789cTheModelofRiskHerewereporttheremarkablefindingthatidenticalpatternsofarecurrentlyemergingwithinthesedifferentinternationalarenas.NotonlyhavethewarsinIraqandColombiaevolvedtoyieldasamepower-lawbehavior,butthisbehavioriscurrentlyofthesametativeformasthewarinAfghanistanandglobalterrorisminnon-G7countries.Notonlyisthemodel’spower-lawbehaviorinexcellentagreementwiththedatafromIraq,Colombiaandnon-G7terrorism,itisalsoconsistentwithdataobtainedfromtherecentwarinAfghanistan.Power-lawdistributionsareknowntoariseinalargenumberofphysical,biological,economicandsocialsystems.Inthepresentcontext,apower-lawdistributionmeansthattheprobabilitythataneventwilloccurwithbehaviorPisgivenby[12]R(P) (3-1-whereP(0,1],PPtextandCandαarepositivecoefficients[13][14],tstudieshaveshownthatthedistributionobtainedfrompastterrorists’attackexhibitsapower-lawwith[15]=1.809.Sincewecan’tgetthecoefficientsCeffectively,wedefinearelativeriskindexramongagroupofpeoplewhoaremonitoredduringthespecifictimeintervalasar aRa
(3-1-SolutionsandResultsforTheSolutionStepstoGenerationofTerm-FrequencyItisterm-frequencymatrixofalluniqueterms dj j1,2,,NTheterm matrixFreqisaMNmatrixwithtiuniquetermsindictionaryi1,2,,Mand stheelementsofFreqarerepresentedas freqi,jwhicheachelementindicatesthefrequencyofitermin TheCranfielddatacollectionispreprocessedtoconvertintoindividual1398textfiles.Also,non-embeddingspecialcharactersandnumeralshavebeenremovedfromthesefiles.79,728wordshavebeencollectedwhicharethenprocessedtofindthefrequencyofuniquewordsineachs.Thedictionaryofuniquewordsisof7805words.Thusthetermfrequencymatrixisofsize78051398.GenerationofQuerymatrixandTerm-weightcalculationsandAfterremovingstop-listwordsandnon-embeddingspecialcharactersisusedasquery,whichcontributestothesetof1398uniquequeriesrepresentedasq.Here,wehavetakenqueriesastitlesoftheinsteadofthedatasetqueriessoastojudgetherelevancymoreprofoundly.Thegeneratedmatrixfor1398queriesisQ .Aterm-frequencymatrixisprocessedtogetthetermweightsconsideringterm-weightingTheResultsofFigure2:IndextermsinaFigure2showsthedistributionofindextermsindictionaryforindividuals.Thedictionaryconsistsof7805uniqueterms.Figure3:FrequencycountofeachuniquetermamongdataFigure3showsfrequencycountofeachuniquetermindictionarydistributedincompletedataset.Someoftheuniquetermssuchas(‘ISIS’,2059),(‘Qaeda’,1245),(‘hijack’,1076),(‘Assassination’,897),withhighfrequencyinentiresisFigure4:thedistributionofthePvalueamongthe Figure5:thedistributionofthervalueamongthe IntheFigure5,wedefine0.1asthethresholdoftheriskindex.Ifaone’sriskindexisbeyond0.1,heorshecan eapotentialterrorist,andotherwisemorelikelytobeanordinaryFromthe1398individualtextfilesthatareobtainedfrom1398individuals,wecaneasilydrawaconclusionthatmostpeoplewhohavebeenaccesstotheterrorism-relatedinformationarenotlikelyto epotentialterrorists.Therearejust12onesofallmonitored swhoarelikelyto epotentialterrorists,besidesalltheirriskindexesarebeyond0.1.StrengthandWeaknessinStrength:Themodelhasprovedthatwecandetectanddiscriminateterroristsfrommanyinternetuserswhoaremonitoredforthepurposeofpreventingterrorism.Moreover,wehavedrawnsomeusefulconclusionsaboutthetendencyofterrorism.Throughthecalculationofthemodel,wecanfindthatmostpeoplewhoaremonitoredandhaveaccesstotheinformationofterrorismwillnotbelikely eapotentialterrorist.Themodelcanbeappliedtosuchthoseactivities,terroristsurveillanceandcriminalactivitymonitoring.Weakness:Thismodeljustappliestoyzethetextinformationofthosepeoplewhoweremonitored.Aswehavestatedinthearticle,thenetworkbehaviorofthemonitored maybeyzedfromthreeaspectsofinformation,thatis,text,imageandwebsite.Inourmodel,weuseonlythefrequencyysisofthetexttoevaluatetheriskindexofthe whoismonitoredonreal-time.Expertsusetheexpressivebigdatatoindicatehugeamountsofinformation.Especiallyinthecontemporaryinformationalworld,bigdatacanrevealalotofinformationthatishiddenbehindthebigdata.Theyticaltechniquesofbigdatacanbeutilizedtofightagainstterrorism.Butunlikethetraditionaldatamining,dataysisofterrorism-relatedinformationneedscategorizingtheminaneffective,fastandautomaticmanner.Inthispaper,wepresentanewclusteringalgorithmtocategorizebigdata.ExtraSignsanddefinitionsindicatedabovearestillvalid.Herearesomeextrasignsandivtisthevelocityofparticleiat tioniixtisthepositionofparticleiat tionirdi,jisthedistancebetweenthesampleiandthesample(x,
istherelativecoordinatepairbasedtherdi,AdditionalThetestdatasetinthepapercanbeequivalenttothemonitoringTheclusteringalgorithmcanobtainhowmanygroupsofthedatasetandhowmanyremaindersineachgroup,butcan’tachievetoobtaintheinformationofeachTheFoundationofMDCSSMtoCategorizeBigIntermsofclustering’sobjectives,theaimsofdataclusteringareminimizesimilarityamonginstanceinoneclusterandizedissimilaritybetweentwoclusters.ParticleSwarmOptimization(PSO)isapopulation-basedsearchalgorithmwhichsimulatesbirdbehaviorinfindingfood[16].InPSO,birdsrepresentedasparticleareemployedtoperformsolutionexploration.Particleatanyinitialpositionmovestootherpositionwithacertainvelocityanddirection.Ineveryitionvelocityisadjustedbasedonparticlebestsolutionandsocialbestsolution.ThevelocityofeachparticleisEquatio(3-updatedusingEquation(3-2-2).ThisconceptmakesPSO esdifferentwithotherheuristicmethods[17].vt1wvtcr(pbestxt)cr(gbestxt 1 2 xt1vt Wherevt tarevelocityandpositionofparticleiat tiont, Thenotationwisdefinedasinertiaweight.Thisisamechanismtocontroltheexplorationandexploitationabilitiesoftheparticleandalsotoeliminatetheneedforvelocityclam.Inthispaper,PSOalgorithmisextendedsothatitcan automaticclusteringproblem.Generally,therearetwomajorissuesinsolvingautomaticandfastclustering,namelydeterminingclusternumberandfindingclustercentroids.Inorderto modatethesetwoobjectives,theautomaticclusteringalgorithmemploysaparticlewhichcomprisesoftwosections.Thefirstsectionisresponsibleforrepresentingnumberofclusterswhiletheothersectioninformsclustercentroids.Explorationstepisconductedtowardsthesetwosectionsgradually.Afterupdatingasection,infeasibilityconstraintwillbechecked[18].Itcoversfeasiblenumberofclustersandcluster’ssize.Inaddition,k-meansisperformedtoupdatethesecondsectionofeachparticlebasedonactiveclustersobtainedbyitsfirstsection.Figure6:flowchartofthemodelAparticlecomprisesoftwosections.Sectiononerepresentsnumberofclusterswhilesectiontwogivesinformationregardingclustercentroidordatapointsbelongstothecorrespondingcluster.Throughthisscheme,eachparticlehasitsownexplorationpathsothatthesearchspacecanbeexploredwideranddeeper.SupposesdataclusteringisconductedtowardsagivendatasetD{dj|i1,2,,S}whereSisnumberofdatapointsanditconsistsofMattributes.Lettheappropriatenumberclustersisanintegernumberintherange[2,Nmax],whereNmaxispumnumberofclusters.Aparticlepin tiontsymbolizedasXtpof(1M)Nmaxbitsasillustratedasthefollowing pNAllbitsarecontinuousnumberwithin[0,1].The Nmaxbitsrepresentsporinactiveclusters.Clusterkinparticlepisanactiveclusterifthekthbit Xtpgreaterthanorequalto0.5.Otherwise,thecorrespondingclusterisinactive.Furthermore,therestbitscorrespondtoclustercentroid.Theinitialparticleandvelocityaregeneratedrandomly.EachbitiinaparticleisupdatedusingEquationguaranteefeasibilityofthenextparticle.Inthisadditionalprocedure,vt1wtv
cr(yxt)cr
xt
(3-2-
xt1xtvt Inthisadditionalprocedure,ifresultfromEquation(3-2-9),isoutside[0,1],xt1sigmoid(xpi),ifx
xt ,vt velocityoftheithbitinparticlepfor tiontypt ithbitinparticleypt iz theithbitinglobaliInupdatingthevelocity,twoparametersarerequired.Thereareinertiaweightw,andlearningratec1andc2.Theclusteringalgorithmappliestime-varyinginertiaweight.Herein,theinertiaweightlinearlydecreasesbasedontheEquation(3-2-11),w
(wmaxwmin)
max heretheTistotali tionandtiscurrentition.1)Procedureforevaluatingnumberofclusters[20].GivenparticleXt{xt,..., },NareactiveclustersinXt,and|N| pNmax numberofactiveIf|NpGeneratetheintegernumberi,j{1,...,Nmax},iIfxtxtxt |Np|=|NpEndIfxtxtxt |Np|=|NpEndifEndif2)Procedureforevaluatingcluster'sGivenparticleXt{xt,..., },NisactiveclustersinXt,and|N|is pNmax numberofactiveclusters,and|xt|issizeofcluster Fori=1toIfxtIf|xt|2and|Npxtxt If|xt|ReassigndatatoanotherclusterwhichhastheshortestdistanceEndif|Np||Np|1ElseifChooseanydatapointsdq,drD,qx betheoriginalclusterofdqandAssigndatad,dtocluster xtxt EndifEndfor
xx xxInthispaper,thefitnessfunctionofPSOclusteringalgorithmisgivenas2
(Npp2
min{cicj1)i,jNp,i
(3-2-
TheResultsofSincethescarcityofthebigmonitoringdata,otherdatasetsareadoptedtotestourclusteringalgorithmofparticleswarmoptimization,suchas“Iris”,“wine”,“Glass”and“Aggregation”fromthepublicdatasetwebsites.Afterfinishingclusteringtodata,thecategorizeddataneedstobevisualizedinadirectmanner.Forone-dimensionalorMtwo-dimensional,eventhreedimensionaldata,thedatasetcanbedirectlyvisualizedintheCartesiancoordinate.Butforhighdimensional,thedatasetcan’tbevisualizedintheCartesiancoordinate,thusatechniqueofdimension-reductionisintroducedinthispaper,themultidimensional-scalingmethodisintroducedasfollows[21]:M )2(M i, jkn
((xx)2(yy)2rd2 i, s.txi0,xjInthedatasetIris,thereare150sampleswith4attributes.Thus,it’saneedtodemonstratetheclustercentersandclusterresultsintwodifferentgraphs.Figure7:ClustercentersIrisdatasetinarelativecoordinateFromtheFigure7itcanbeeasilyconcludedthattherearethreeclusteringcentersinthedatasetIris,whichmeansthedatasetIriscanbegroupedintothreeFigure8:ClusterdistributionofIrisdatautilizingPSOclusteringFromtheFigure8,thedatasetIriscanbeseparatedintothreegroupsastheparticleswarmoptimizationgoesonlikethefourstep-shapedsubgraphsintheFigure7.Figure9:ClustercentersandClusterdistributionof“Wine”FromtheFigure9wecangetthatthe“Wine”datasetwasobviouspointedtotwokindsbythefastclusteringmodelbasedonPSOalgorithmClustercentersandClusterdistributionweregivenintheFigure8Figure10:ClustercentersandClusterdistributionof“glass”FromtheFigure10,Thedataof“glass”datasetwasdividedintotwogroupsastheparticleswarm.Inthegraph,thetwocategoriesofdataareclustered.Figure11:ClustercentersandClusterdistributionof“Aggregation”FromtheFigure11,wecangetthatthe“Aggregation”datawasseparatedintothreegroupsastheparticleswarm.ThefastclusteringmodelbasedonthePSOplishedtheclusterof“Aggregation”StrengthandStrength:Theclusteringmodelcanachievethegoalofcategorizingthedatasetsinaneffective,fastandautomaticmanner.Andthisclusteringmodelalsoaimstomakeupfortheignoranceofthesizeofdatasetswhichisthoughtnothavemuchinfluenceontheaccuracyoftheclusteringresults.Anothergiantadvantageoftheclusteringmodelisthatitdoesnotneedanypriorknowledge.Thisclusteringalgorithmbelongstounsupervisedlearning.Weakness:Theclusteringmodelneedscomparativelygoodinputparameters,suchasthethresholdvalueofclusteringradius.Andalsothefitnessfunctionissensitivetotwopenaltyfactors.ConclusionsoftheForthePTTRISM,thevectorspaceoflexicalmeaningandwordfrequencyysisdemonstratetheirpracticabilityinevaluatingtheriskindexesofpeoplewhoaremonitoredon-lineandreal-time.ThroughCatanfielddatasetsvalidation,andincombinationwiththerealsituation,onlyaveryfewpeoplearelikelytoeapotentialterroristbygiventhesetthresholdvalueoftherelativeriskindex(0.1).TheresultofCatanfielddatasetshowsthatonly12peoplefrom1398individualsshoulddeserveformuchmoreattention,becausetheirriskindexesarethesetthresholdvalueoftherelativeriskindex.FortheMDCSSM,theclusteringtechniqueofparticleswarmoptimizationcanachievethegoalofcategorizingthebigmonitoringdatainaneffective,fastandautomaticmanner.InordertovalidatethepracticabilityoftheFunctionModel1,themodel2mustbetestedbysometough-processingdatasets.Butduetoscarcityofthebigmonitoringdatasets,someotherequivalentdatasets,suchas“Iris”,“Wine”,“Glass”and“Aggregation”arerecedforthebigmonitoringdata.Theexperimentalresultsdodemonstrateagoodperformanceofclusteringdatasetsinaneffective,fastandautomaticmanner.MethodsUsedinourThecombinationofthevector-spaceoflexicalmeaningandword-frequencyysispromotesthereliabilityofwebtextcontenttoevaluatetherelativeriskindex.Theadoptionoftheentropyweightbasedoninformationretrievalenhancestheysisoftheinternetvisitors’typicalbehaviors.Theunsupervisedlearningtechniqueofdensity-basedclusteringisutilizedtoseparatethecategoriesofdatasets,inordertoacceleratethecomputingtime,thestandardparticleswarmoptimizationwiththeweight-shrinkfactorisadoptedinthispaper,andmoresignificantly,basedtheessentialthoughtsofparticleswarmoptimization,theclusteringproceduresresemblestheoptimizationprocedurestoachievethegoalofcategorizingtheinformationaldatasetinaneffective,fastandautomaticmanner.ApplicationsofourThemodel1doesnotonlyhelpevaluatetheinternetvisitors’behaviorsanddetect,evendiscriminatethevisitor’sidentity,butalsoprovidearobusttoolforcommercialpeoplethatcanbeappliedtodigoutpotentialcustomers.Themodel2isapplicabletomanyothersubjects,besidesdatamining.Someacademicresearchershavealreadysuccessfullyappliedk-meansclusteringtoimageprocessing,suchasimagesegmentation,edge-detection.Thisclusteringalgorithmcanrecethek-meansclusteringinimageFromthestatisticsoftheannualnumberofterrorists’attackfrom1968to2009,thenumberofterrorists’attackisincreasingyearbyyears.Theterroristattackshavecausedabadinfluenceonworldpeace.Manycountriesintheworldhavecommittedtocarryouttheactivitiestofightingterroristorganizations.Forexample,RussiandispatchedfighterstobombISIS,arepresentativeofworldterroristorganizations.Thusitisimperativetofightterroristsandprevent.Therearethreestrategiesthatmayhelpfightterrorismasfollows:Putintomoreresourcesintermsofnetworkagainstterrorism.YoucouldbuildUserOnlineMonitoringSystemofBehaviorandPsychologicaltomonitorandassessthebehaviorofthepublic.It’sfoundthatonlyfewpeoplehastendencyofterrorism.Youcouldestablishnetworkinformationsecurityevaluationsystemtoweakenorevenpreventtheterroristpropagandathroughthenetwork.Itisafeasiblewaytounitglobalnetworksystemtomonitoronlineusers’behavior.Becauseterroristsorpeoplewhohaveatendencytoterrorismspreadaroundtheworld,particularlyintheMiddleEastandAfghanistan.Bythisway,wecanmastertheactionofterrorismo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)第二學(xué)年(眼科臨床)診療技術(shù)階段測試題及答案
- 2025年大學(xué)大四(餐飲管理)運(yùn)營管理畢業(yè)測試試題及答案
- 2025年大學(xué)勞動與社會保障(社保研究)試題及答案
- 2025年中職(人力資源管理事務(wù))員工關(guān)系管理試題及答案
- 2025年注冊會計師(CPA)考試 會計科目全面解析試卷及答案
- 2026年當(dāng)前房地產(chǎn)市場的監(jiān)管政策解讀
- 北京城市總體規(guī)劃實(shí)施體檢報告公眾讀本(2023年度)
- 2026江西九江市永修迎賓館管理有限公司招聘勞務(wù)派遣制工作人員2人備考題庫帶答案詳解
- 光伏培訓(xùn)課件教學(xué)
- 2026安徽亳州市蒙城縣就業(yè)見習(xí)人員招募備考題庫及答案詳解(考點(diǎn)梳理)
- 廣東交通職業(yè)技術(shù)學(xué)院招聘考試真題2025
- 糖尿病胰島素注射技術(shù)規(guī)范化操作與并發(fā)癥管理指南
- 成都印鈔有限公司2026年度工作人員招聘參考題庫含答案
- 2026年四川單招基礎(chǔ)知識綜合試卷含答案
- GB/T 28743-2025污水處理容器設(shè)備通用技術(shù)條件
- GB/T 1773-2008片狀銀粉
- GB/T 12007.4-1989環(huán)氧樹脂粘度測定方法
- (完整版)北京全套安全資料表格
- 幼兒園小班社會:《我長大了一歲》 課件
- 辦公室危險源清單辦公室
- 碼頭工程混凝土結(jié)構(gòu)防腐涂料施工方案
評論
0/150
提交評論