2023屆福建省福州市倉山區(qū)高中畢業(yè)班“最后一卷”試卷數(shù)學試題含解析_第1頁
2023屆福建省福州市倉山區(qū)高中畢業(yè)班“最后一卷”試卷數(shù)學試題含解析_第2頁
2023屆福建省福州市倉山區(qū)高中畢業(yè)班“最后一卷”試卷數(shù)學試題含解析_第3頁
2023屆福建省福州市倉山區(qū)高中畢業(yè)班“最后一卷”試卷數(shù)學試題含解析_第4頁
2023屆福建省福州市倉山區(qū)高中畢業(yè)班“最后一卷”試卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023屆福建省福州市倉山區(qū)高中畢業(yè)班“最后一卷”試卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.為了支援地震災區(qū)同學,某校開展捐書活動,九(1)班40名同學積極參與.現(xiàn)將捐書數(shù)量繪制成頻數(shù)分布直方圖如圖所示,則捐書數(shù)量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.42.實數(shù)a、b在數(shù)軸上的對應點的位置如圖所示,則正確的結論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<03.一個正比例函數(shù)的圖象過點(2,﹣3),它的表達式為()A. B. C. D.4.在數(shù)軸上到原點距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道5.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-26.在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a(chǎn)<0,b<0,c>0B.﹣=1C.a(chǎn)+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數(shù)根7.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.8.如圖,拋物線y=ax2+bx+c(a≠0)過點(1,0)和點(0,﹣2),且頂點在第三象限,設P=a﹣b+c,則P的取值范圍是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<09.運用乘法公式計算(4+x)(4﹣x)的結果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x210.下列二次根式中,最簡二次根式的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.12.已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.13.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.14.經(jīng)過三邊都不相等的三角形的一個頂點的線段把三角形分成兩個小三角形,如果其中一個是等腰三角形,另外一個三角形和原三角形相似,那么把這條線段定義為原三角形的“和諧分割線”.如圖,線段CD是△ABC的“和諧分割線”,△ACD為等腰三角形,△CBD和△ABC相似,∠A=46°,則∠ACB的度數(shù)為_____.15.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.16.一組數(shù)據(jù)4,3,5,x,4,5的眾數(shù)和中位數(shù)都是4,則x=_____.三、解答題(共8題,共72分)17.(8分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.18.(8分)先化簡,后求值:,其中.19.(8分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進的“計算機輔助電話訪問系統(tǒng)”(簡稱CATI系統(tǒng)),采取電腦隨機抽樣的方式,對本市年齡在16~65歲之間的居民,進行了400個電話抽樣調(diào)查.并根據(jù)每個年齡段的抽查人數(shù)和該年齡段對博覽會總體印象感到滿意的人數(shù)繪制了下面的圖(1)和圖(1)(部分)根據(jù)上圖提供的信息回答下列問題:(1)被抽查的居民中,人數(shù)最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數(shù),并補全圖1.注:某年齡段的滿意率=該年齡段滿意人數(shù)÷該年齡段被抽查人數(shù)×100%.20.(8分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時,x的取值范圍.21.(8分)在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標有數(shù)字1,1,2;乙袋中的小球上分別標有數(shù)字﹣1,﹣2,1.現(xiàn)從甲袋中任意摸出一個小球,記其標有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標有的數(shù)字為y,以此確定點M的坐標(x,y).請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標;求點M(x,y)在函數(shù)y=﹣2x22.(10分)某藥廠銷售部門根據(jù)市場調(diào)研結果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=(1)當8<t≤24時,求P關于t的函數(shù)解析式;(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關于t的函數(shù)解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.23.(12分)據(jù)城市速遞報道,我市一輛高為2.5米的客車,卡在快速路引橋上高為2.55米的限高桿的上端,已知引橋的坡角∠ABC為14°,請結合示意圖,用你學過的知識通過數(shù)據(jù)說明客車不能通過的原因.(參考數(shù)據(jù):sin14°=0.24,cos14°=0.97,tan14°=0.25)24.如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉(zhuǎn)得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點D順時針旋轉(zhuǎn)90°得到,求線段DF的長;(3)若線段DE是CD繞點D旋轉(zhuǎn)90°得到,且點E恰好在拋物線上,請求出點E的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵在5.5~6.5組別的頻數(shù)是8,總數(shù)是40,∴=0.1.故選B.2、C【解析】

直接利用a,b在數(shù)軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數(shù)軸上看出,a在原點左側,b在原點右側,∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數(shù)軸上看出,a在b的左側,∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數(shù)軸和有理數(shù)的四則運算,解題的關鍵是掌握利用數(shù)軸表示有理數(shù)的大小.3、A【解析】

利用待定系數(shù)法即可求解.【詳解】設函數(shù)的解析式是y=kx,根據(jù)題意得:2k=﹣3,解得:k=.∴函數(shù)的解析式是:.故選A.4、C【解析】

根據(jù)數(shù)軸上到原點距離等于3的數(shù)為絕對值是3的數(shù)即可求解.【詳解】絕對值為3的數(shù)有3,-3.故答案為C.【點睛】本題考查數(shù)軸上距離的意義,解題的關鍵是知道數(shù)軸上的點到原點的距離為絕對值.5、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.6、D【解析】試題分析:根據(jù)圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數(shù)根,則正確,故選D.7、D【解析】

連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關鍵是證明∠ADC=90°.8、A【解析】

解:∵二次函數(shù)的圖象開口向上,∴a>1.∵對稱軸在y軸的左邊,∴<1.∴b>1.∵圖象與y軸的交點坐標是(1,﹣2),過(1,1)點,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故選A.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關系,利用數(shù)形結合思想解題是本題的解題關鍵.9、B【解析】

根據(jù)平方差公式計算即可得解.【詳解】,故選:B.【點睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關鍵.10、C【解析】

判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.12、0<m<【解析】【分析】利用待定系數(shù)法得出直線解析式,再得出平移后得到的直線,求與坐標軸交點的坐標,轉(zhuǎn)化為直角三角形中的問題,再由直線與圓的位置關系的判定解答.【詳解】把點(12,﹣5)代入直線y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)個單位后得到的直線l所對應的函數(shù)關系式為y=﹣x+m(m>0),設直線l與x軸、y軸分別交于點A、B,(如圖所示)當x=0時,y=m;當y=0時,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,過點O作OD⊥AB于D,∵S△ABO=OD?AB=OA?OB,∴OD?=×m×m,∵m>0,解得OD=m,由直線與圓的位置關系可知m<6,解得m<,故答案為0<m<.【點睛】本題考查了直線的平移、直線與圓的位置關系等,能用含m的式子表示出原點到平移后的直線的距離是解題的關鍵.本題有一定的難度,利用數(shù)形結合思想進行解答比較直觀明了.13、11≤x<1【解析】

根據(jù)對于實數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關鍵.14、113°或92°【解析】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.①當AC=AD時,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;②當DA=DC時,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.故答案為113°或92°.15、1【解析】試題分析:由m與n為已知方程的解,利用根與系數(shù)的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數(shù)的關系.16、1【解析】

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),由此可得出答案.【詳解】∵一組數(shù)據(jù)1,3,5,x,1,5的眾數(shù)和中位數(shù)都是1,∴x=1,故答案為1.【點睛】本題考查了眾數(shù)的知識,解答本題的關鍵是掌握眾數(shù)的定義.三、解答題(共8題,共72分)17、(1)證明見解析;(1).【解析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)矩形的性質(zhì)求出OC=OD,根據(jù)菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據(jù)菱形的性質(zhì)得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.【點睛】本題主要考查了矩形的性質(zhì)和菱形的性質(zhì)和判定的應用,能靈活運用定理進行推理是解此題的關鍵,注意:菱形的面積等于對角線積的一半.18、,【解析】分析:先把分值分母因式分解后約分,再進行通分得到原式=,然后把x的值代入計算即可.詳解:原式=?﹣1=﹣=當x=+1時,原式==.點睛:本題考查了分式的化簡求值:先把分式化簡后,再把分式中未知數(shù)對應的值代入求出分式的值.19、(1)11~30;(1)31~40歲年齡段的滿意人數(shù)為66人,圖見解析;【解析】

(1)取扇形統(tǒng)計圖中所占百分比最大的年齡段即可;(1)先求出總體感到滿意的總人數(shù),然后減去其它年齡段的人數(shù)即可,再補全條形圖.【詳解】(1)由扇形統(tǒng)計圖可得11~30歲的人數(shù)所占百分比最大為39%,所以,人數(shù)最多的年齡段是11~30歲;(1)根據(jù)題意,被調(diào)查的人中,總體印象感到滿意的有:400×83%=331人,31~40歲年齡段的滿意人數(shù)為:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,補全統(tǒng)計圖如圖.【點睛】本題考點:條形統(tǒng)計圖與扇形統(tǒng)計圖.20、(1)y1=-2x+4,y2=-;(2)x<-1或0<x<1.【解析】

(1)把點A坐標代入反比例函數(shù)求出k的值,也就求出了反比例函數(shù)解析式,再把點B的坐標代入反比例函數(shù)解析式求出a的值,得到點B的坐標,然后利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)找出直線在一次函數(shù)圖形的上方的自變量x的取值即可.【詳解】解:(1)把點A(﹣1,6)代入反比例函數(shù)(m≠0)得:m=﹣1×6=﹣6,∴.將B(a,﹣2)代入得:,a=1,∴B(1,﹣2),將A(﹣1,6),B(1,﹣2)代入一次函數(shù)y1=kx+b得:,∴,∴;(2)由函數(shù)圖象可得:x<﹣1或0<x<1.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結合思想解題是本題的關鍵.21、(1)樹狀圖見解析,則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】試題分析:(1)畫出樹狀圖,可求得所有等可能的結果;(2)由點M(x,y)在函數(shù)y=﹣2x試題解析:(1)樹狀圖如下圖:則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵點M(x,y)在函數(shù)y=﹣2x∴點M(x,y)在函數(shù)y=﹣2x的圖象上的概率為:2考點:列表法或樹狀圖法求概率.22、(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.【解析】分析:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據(jù)月毛利潤=月銷量×每噸的毛利潤可得函數(shù)解析式;②求出8<t≤12和12<t≤24時,月毛利潤w在滿足336≤w≤513條件下t的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)可得P的最大值與最小值,二者綜合可得答案.詳解:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①當0<t≤8時,w=(2t+8)×=240;當8<t≤12時,w=(2t+8)(t+2)=2t2+12t+16;當12<t≤24時,w=(-t+44)(t+2)=-t2+42t+88;②當8<t≤12時,w=2t2+12t+16=2(t+3)2-2,∴8<t≤12時,w隨t的增大而增大,當2(t+3)2-2=336時,解題t=10或t=-16(舍),當t=12時,w取得最大值,最大值為448,此時月銷量P=t+2在t=10時取得最小值12,在t=12時取得最大值14;當12<t≤24時,w=-t2+42t+88=-(t-21)2+529,當t=12時,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴當12<t≤17時,448<w≤513,此時P=t+2的最小值為14,最大值為19;綜上,此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.點睛:本題主要考查二次函數(shù)的應用,掌握待定系數(shù)法求函數(shù)解析式及根據(jù)相等關系列出分段函數(shù)的解析式是解題的前提,利用二次函數(shù)的性質(zhì)求得336≤w≤513所對應的t的取值范圍是解題的關鍵.23、客車不能通過限高桿,理由見解析【解析】

根據(jù)DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根據(jù)cos∠EDF=,求出DF的值,即可判斷.【詳解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE?cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高桿頂端到橋面的距離DF為2.1米,小于客車高2.5米,∴客

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論