版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Artificialintelligence: opportunitiesandimplicationsforthefutureofdecisionmaking
GovernmentOfficeforScience
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
Foreword
Weareincurrentlyinthefoothillsofanewtechnologicalrevolution.Artificialintelligencehasthepotentialtobeastransformativeinourlifetimesasthesteam-poweredeconomyofthe19th
century.
Alreadyit’slettingustotalktooursmartphones,recommendingusmusic,describingphotosforthevisuallyimpairedandflaggingupfirerisksincities.
Inthenearfuturewecouldseeitdeployedineverythingfromdriverlesscars,tointelligentenergygrids,totheeradicationofinfectiousdiseases.
Ingovernmenttoowearelookingatthepotentialapplicationsofthistechnologyinthedeliveryofpublicservices.
OurGovernmentDataProgrammeisincreasingthenumberofprojectsanddatascientistsingovernment,whileplayingaleadingroleinestablishingtheappropriateuseofthesepowerfulnewtools.
Asonetheworld’sleadingdigitalnations,artificialintelligencepresentsahugeopportunityfortheUK.
Getthisright,andwecancreateamoreprosperouseconomywithbetterandmorefulfillingjobs.Wecanprotectourenvironmentbyusingresourcesmoreefficiently.Andwecanmakegovernmentsmarter,usingthepowerofdatatoimproveourpublicservices.
Aswe'veseenalreadyinmanyareas,muchroutinecognitivework-thefiling,siftingandsorting-canincreasinglybeautomated,freeingpeopleuptofocusonthemorehumanaspectsofanyjob.
ThePrimeMinisterhasannouncedanindependentreviewofmodernemploymentpractices,sothatthesupportweprovidebusinessesandworkerskeepspacewithchangesinthelabour
marketandtheeconomy.
Artificialintelligencealsoposesnewquestionsaboutethicsandgovernance,theresponsibleuseofdataandstrongcyberdefences.Torealisethefullpotentialofthisrevolution,againwehavetobereadywithanswers.
IampleasedthattheRoyalSocietyandtheBritishAcademyareconductingareviewthatwillconsiderhowbesttheUKmightmanagetheuseofartificialintelligence.
Thisnotesetsoutwherethescienceisheading,describessomeoftheimplicationsforsocietyandgovernment,andshowshowwecanresponsiblyusethistechnologytoimprovethelivesandlivingstandardsofeveryoneinBritain.
ItisatimelyandimportantpieceofworkfromtheGovernmentChiefScientificAdviser.
MattHancock
MinisterforDigitalandCulture
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
Contents
Foreword 2
Introduction 4
Whatisartificialintelligence? 4
Artificialintelligenceforinnovationandproductivity 8
Theuseofartificialintelligencebygovernment 10
Effectsonlabourmarkets 12
Newchallenges 14
Publicdialogue 17
Conclusion 18
AnnexA:Background 19
AnnexB:Sources 20
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
4
Introduction
Artificialintelligencehasarrived.Intheonlineworlditisalreadyapartofeverydaylife,sittinginvisiblybehindawiderangeofsearchenginesandonlinecommercesites.Itoffershuge
potentialtoenablemoreefficientandeffectivebusinessandgovernmentbuttheuseofartificialintelligencebringswithitimportantquestionsaboutgovernance,accountabilityandethics.
Realisingthefullpotentialofartificialintelligenceandavoidingpossibleadverseconsequencesrequiressocietiestofindsatisfactoryanswerstothesequestions.Thisreportsetsoutsome
possibleapproaches,anddescribessomeofthewaysgovernmentisalreadyengagingwiththeseissues.
Artificialintelligenceisnotadistincttechnology.Itdependsforitspoweronanumberof
prerequisites:computingpower,bandwidth,andlarge-scaledatasets,allofwhichareelementsof‘bigdata’,thepotentialofwhichwillonlyberealisedusingartificialintelligence.Ifdataisthefuel,artificialintelligenceistheengineofthedigitalrevolution.
Muchhasalreadybeenwrittenabouttheuseofartificialintelligenceandbigdata.Thispaper
doesnotattempttosurveythewholefield.ItsoriginslieinaseminarheldattheBritish
AcademyinFebruary2016,chairedbyMarkWalport,GovernmentChiefScientificAdviserandMarkSedwill,PermanentSecretaryattheHomeOffice,thatdiscussedsomeofthelegaland
ethicalissuesaroundtheuseofartificialintelligence.Theissuesdiscussedthereprovidethe
coreofthisreport,withadditionalmaterialdrawnfromtheviewsofa
widerangeofscientific
andlegalexpertsinthefield,
althoughwehavesoughttominimisedetaileddiscussionof
technicalaspectsinordertoconcentrateonthepracticalaspectsofthedebate.Wehopethatitservesasanintroductiontothetopic.
Thereportconsidersthefollowingquestions:
.Whatisartificialintelligenceandhowisitbeingemployed?
.Whatbenefitsisitlikelytobringforproductivity?
.Howdowebestmanageanyethicalandlegalrisksarisingfromitsuse?
SirMarkWalport
GovernmentChiefScientificAdviser
MarkSedwill
PermanentSecretary,HomeOffice
5
Artificialintelligenceisparticularlyusefulforsortingdata,findingpatternsand
makingpredictions.Currentexamplesineverydaylifearewidespread:theyincludetranslationandspeechrecognition
servicesthatlearnfromlanguageonline,searchenginesthatrankwebsitesontheirrelevancetotheuser,andfiltersforemailspamthatrecognisejunkmailbasedonpreviousexamples(seeboxformore
uses).Thislistofapplicationsisgrowingrapidly:artificialintelligenceisenablinganewwaveofinnovationacrossevery
sectoroftheUKeconomy.
Artificialintelligenceisabroadterm(seebox).Moregenerallyitreferstothe
analysisofdatatomodelsomeaspectoftheworld.Inferencesfromthesemodelsarethenusedtopredictandanticipatepossiblefutureevents.
Whatisartificialintelligence?
Artificialintelligenceismorethanthesimpleautomationofexistingprocesses:itinvolves,togreaterorlesserdegrees,settinganoutcomeandlettingacomputerprogramfinditsownwaythere.Itisthiscreativecapacitythatgivesartificialintelligenceitspower.Butitalsochallengessomeofourassumptionsabouttheroleofcomputersandourrelationshiptothem.
Someusesofartificialintelligence
ProductrecommendationsfromservicessuchasNetflixandAmazonthatevolvethroughusers’webexperiencesarepoweredbymachinelearning.
TheUK’s‘smartmotorways’usefeedbackonroad
conditionsfromembeddedsensorsandneuralnetworksystemstoanticipateandmanagetrafficflow.
Infinancialmarkets,‘high-frequencytrading’algorithms
usepre-determineddecisioncriteriatorespondtomarketconditionsmanytimesfasterthanhumantradersareableto.Similaralgorithmsarebeingusedbysomefinancial
advisorstoautomaticallyspotinvestmentopportunitiesforclients.
CornellUniversityworkedwithmachinelearning
specialiststoidentifythecallsofrightwhalesmore
accurately,makingiteasiertotrackindividualwhales.
Digitalimagesfrommillionsofsatelliteobservationscanbeanalysedforenvironmentalorsocio-economictrendsusingmachinelearningtoidentifypatternsofchangeanddevelopment.
Statisticalmodelsarecreatedusingseriesofalgorithms,orstep-by-stepinstructionsthat
computerscanfollowtoperformaparticulartask.Computeralgorithmsarepowerfultoolsforautomatingmanyaspectsoflifetoday,takingthestep-by-steproutinesthatunderpinthe
administrativeandoperationaltasksoforganisationsanddigitisingthem,makingthemfasterandmoreconsistent.Oneapproachtoautomationistochooseaseriesofrulestoapplyto
inputs,leadingaparticularoutput.Mostcurrentmedicalself-diagnosissystems,bothinbooksandonline,usethislogic.Certaincombinationsofanswerstoquestionsaredeterministicallylinkedtocertainindividualoutputs.Ifyouprovidethesameanswersagain,thealgorithmwillshowthesameresult.
6
Mostmachinelearningapproachesarenotrestrictedtoproducingasingle
predictionfromgiveninputs.
Manyalgorithmsproduceprobabilistic
outputs,offeringarangeoflikely
predictionswithassociatedestimatesofuncertainty.Thealgorithmsproducing
theseprobabilisticoutputsarecapableofbeingunderstoodbyhumans.However,inthecaseofmorecomplexmachine
learningsystems(suchasdeeplearning:seebox),therearemanylayersof
statisticaloperationsbetweentheinputandoutputdata.Theseoperationshavebeendefinedbyanalgorithm,ratherthanaperson.Becauseofthis,notonlyistheoutputprobabilistic,aswithsimpler
algorithms,buttheprocessthatledtoitcannotbedisplayedinhuman-
understandableterms.Thismakes
machinelearningfundamentallydifferenttothekindsofalgorithmsusedto
automatestandardorganisationalroutines.
Inrecentyears,however,availabledataandcomputingpowerhavereachedthepointwhereit
hasbecomepracticaltodevelopmachinelearning:algorithmsthatchangeinresponsetotheir
ownoutput,or“computerprogramsthatautomaticallyimprovewithexperience”
1
.
Machinelearningsystemshaveoftenbeenshowntopickupdifficult-to-spotrelationshipsindatathatmayotherwisehavebeenmissed.
Terminology
Therangeofdifferentstatisticaltechniquesreferredtoherewiththegeneralterm‘a(chǎn)rtificialintelligence’haveemergedoveralongtimefrommanydifferentresearchfieldswithinstatistics,computerscienceandcognitivepsychology.
Consequently,authorsfromdifferentdisciplinestendtomakedifferentdistinctionsbetweentermslike‘machinelearning’and‘machineintelligence’,usingthemtorefertorelatedbutdistinctideas.
Asthesetechniqueshavebeenappliedindifferent
businessareasthey’vebecomerelevanttoothertasks–sothey’relikelytofeaturealsoindiscussionsabout‘datamining’and‘predictiveanalytics’.
Whilethispaperlooksaheadtoatimewhenmachine
learningismorewidespreadthanatpresent,manyoftheopportunitiesandchallengesitdiscussesariseinothercontextstoo.Soratherthanbedistractedwithan
academicdiscussionaboutterminology,we’vechosentousetheumbrellatermartificialintelligence.
Therearemanydifferentkindsofalgorithmusedinmachinelearning.Thekeydistinctionbetweenthemiswhethertheirlearningis‘unsupervised’or‘supervised’.
Unsupervisedlearningpresentsalearningalgorithmwithanunlabelledsetofdata–thatis,withno‘right’or‘wrong’answers–andasksitfindstructureinthedata,perhapsbyclustering
elementstogether–forexample,examiningabatchofphotographsoffacesandlearninghowtosayhowmanydifferentpeoplethereare.Google’sNewsservice
2
usesthistechniqueto
groupsimilarnewsstoriestogether,asdoresearchersingenomicslookingfordifferencesinthedegreetowhichagenemightbeexpressedinagivenpopulation,ormarketerssegmentingatargetaudience.
Supervisedlearninginvolvesusingalabelleddatasettotrainamodel,whichcanthenbeusedtoclassifyorsortanew,unseensetofdata(forexample,learninghowtospotaparticular
personinabatchofphotographs).Thisisusefulforidentifyingelementsindata(perhapskeyphrasesorphysicalattributes),predictinglikelyoutcomes,orspottinganomaliesandoutliers.Essentiallythisapproachpresentsthecomputerwithasetof‘rightanswers’andasksittofindmoreofthesame.
1Mitchell,T.(1997),MachineLearning
2
/
7
currentinterestinmachinelearningis
focusedon‘deepIearning,,asupervised
learningtechniquecombininglayersof
neuralnetworkstoautomaticallyidentify
thefeaturesofadatasetthatarerelevant
todecision-making.Deeplearningisa
powerfuladditiontothemachinelearning
repertoire:however,itrequiresverylarge
amountsofdatatobeeffective.
TheLondon-basedfirmDeepMind(owned
byGoogle)isaworldleaderinthis
technique.
centraltotheinterestaroundmachine
learningisthepotentialitoffersfor
autonomousdecision-making.
Manyalgorithmicprocessescanbeused
tomakedecisionswithouthumaninput
(suchaswhenmortgageproviders
automaticallyapprovelendingto
individualsbasedontheircreditscore).
Butrealautonomycomeswhenasystem
isabletolearncontinuouslyandmake
deductionsabouttheworldwithouthumaninput.Forexample,self-drivingcarsareabletomakereal-timedecisionsaboutspeedanddirectionwithoutinputfromahumandriver,usingmanyinterlinkedmachinelearningsystemstomakesenseofinformationabouttheir
surroundings.Theyarenotfollowingpre-programmeddecisionsbutrespondingtochangesaroundthem.
usingautonomousdecision-makinginotherareasofsocietywouldbeasignificantchangein
thewayweusedataandmakechoices,bringingwithitimportantquestionsaround
accountabilityandtrust.Thisisparticularlytrueforitsusebygovernment,inlightofthe
compactthatexistsbetweenitandcitizens,anditsresponsibilityfortheirwellbeingand
security.Atthepresenttimethereisgenerallyagreementamongstexpertsandpolicy-makersthatimportantdecisionsmustinvolvea‘humanintheloop,一buttheexactnatureoftheirrole,orthedegreetowhichtheyinfluencetheoutcome,issomethingthatislikelytoevolveasthetechnologydevelopsovertime.
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
DeepIearning
Deeplearningisasubsetofmachinelearningthatdependsonusinglayersofnon-linearalgorithmic
processestofindpatternsorclassifydata.Thereare
manydifferenttechniqueswithinthisgeneralapproach一butthekeyfeatureisthattheyeachusealayeredor
stageddesign,inwhichoutputsfromthepreviouslayerareusedasinputsforthenext.
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
8
Artificialintelligenceforinnovationandproductivity
Artificialintelligenceholdsgreatpotentialforincreasingproductivity,mostobviouslybyhelpingfirmsandpeopleuseresourcesmoreefficiently,andbystreamliningthewayweinteractwithlargesetsofdata.Forexample,firmslikeOcadoandAmazonaremakinguseofartificial
intelligencetooptimisetheirstorageanddistributionnetworks,planningthemostefficient
routesfordeliveryandmakingbestuseoftheirwarehousingcapacity.Artificialintelligencecanhelpfirmsdofamiliartasksinmoreefficientways.Importantly,itcanalsoenableentirelynewbusinessmodelsandnewapproachestooldproblems.Forexample,inhealthcare,datafromsmartphonesandfitnesstrackersthatisanalysedusingnewmachinelearningtechniquescanimprovemanagementofchronicconditionsaswellaspredictingandpreventingacuteepisodesofillness.
Artificialintelligencecanhelpbothcompaniesandindividualemployeestobemoreproductive.Routineadministrativeandoperationaljobscanbelearnedbysoftwareagents(‘bots’),whichcanthenprioritisetasks,manageroutineinteractionswithcolleagues(orotherbots),andplanschedules.EmailsoftwarelikeGoogle’sSmartReplycandraftmessagestorespondentsbasedonpreviousresponsestosimilarmessages.Newsroomsareincreasinglyusingmachine
learningtowritesportsreportsandtodraftarticles:intheoffice,similartechnologycanproducefinancialreportsandexecutivebriefings.
Artificialintelligencecanreducetheburdenofsearchinglargesetsofdata.Inthelegalsector,groupslikeROSS,LexMachinaandCaseTextareusingartificialintelligencetosiftcourt
documentsandlegalrecordsforcase-relevantinformation.Otherfirmsareusingsimilar
techniquesaspartofduediligence.Artificialintelligencecanalsoofferawayofinteractingwiththesedatasets,withplatformssuchasIBM’sWatsonabletosupportexpertsystemsthatcananswerfactualnaturallanguagequestions.Forcybersecurityfirms,artificialintelligenceoffersawayofrecognisingunusualpatternsofbehaviourinanetwork.
Theseexamplesfocusonusingsoftwaretodothesamethingashumansbut,inmanycases,analysingdataofvolumeorcomplexitythatisbeyondtheanalyticalcapabilityofindividual
humans.Indeed,artificialintelligenceisnotareplacement,orsubstituteforhumanintelligence.Itisanentirelydifferentwayofreachingconclusions.Artificialintelligencecancomplementorexceedourownabilities:itcanworkalongsideus,andeventeachus,asshownbyLeeSedol’sunbrokenstringofvictoriessinceplayingAlphaGo
3
.Thisoffersnewopportunitiesforcreativityandinnovation.Perhapstherealproductivitygainfromartificialintelligencewillbeinshowingusnewwaystothink.
TheUKisaworldleaderinthescienceunderpinningthistechnology,witharichecosystemofinvestors,employers,developersandclients,andanetworkofsupportingbodiessuchastheAlanTuringInstitute.InnovationsdevelopedfirstinuniversitiessuchasCambridge,Oxford,
ImperialandUniversityCollegeLondonhavefoundtheirwayintotoolsusedbymillionsaround
3“LeeSedolhaswoneverysinglegamehehasplayedsincethe#AlphaGomatchinc.usingsomenewAG-likestrategies-trulyinspiringtosee!”DemisHassabis,CEOofDeepMind,4thMay2016
(/demishassabis/status/728020177992945664,
/player/Lee+Sedol)
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
9
theglobe,withincreasingnumbersofUKstartupselectingtoremainintheUK,furtherstrengtheningexpertiseandcapabilityinthiscountry.
Thepotentialisdrivingarapidtake-upofartificialintelligenceacrossarangeofsectors
4
.InthewordsofthetechnologypunditKevinKelly:“thebusinessplansofthenext10,000startupsareeasytoforecast:TakeXandaddAI”
5
.Estimatingthesizeofthisgrowthischallenginggiventhedifferentdefinitionsof‘a(chǎn)rtificialintelligence’,‘machinelearning’andrelatedterms:itisalsohardtospecifywheresectorslike‘bigdata’endand‘machinelearning’begins.Buta2015US
report
6
suggeststhattheglobalmarketin‘robotsandartificialintelligence-basedsystemswillgrowfrom$58bnin2014to$153bnin2020.
Lookingatbigdatamorewidely,areportearlierthisyearonthevalueofbigdataandthe
internetofthingsestimated£240billionincumulativebenefitstotheUKbetween2015-20;
manufacturingshouldderivethegreatestbenefits,withthegreatestgainsacrossallsectorssettocomefromefficiencysavings
7
.Anotherreportfrom2015predictsmajoroperationalsavingsforEuropeangovernmentsbyusingbigdata,inadditiontoopportunitiestoincreasetax
revenuesandreducefraudanderror
8
.A2014studyof500UKbusinesses,meanwhile,
concludedthatthosewhomakebetteruseofcustomerandconsumerdataarebetween8and13percentmoreproductivethanfirmswhodon’t
9
.Morebroadly-definedforecastsforthe
impactofsystemscombiningrobotics,dataandartificialintelligence–sometimeslabelled“Industry4.0”
10
–alsopromisesubstantialgains.
AccordingtoMcKinsey,companiesthemselvesanticipateIndustry4.0toincreaserevenuesby23percentandproductivityby26percent
11
.Artificialintelligencehasacentralroleinenablingallofthisgrowth.
4AnoverviewofcurrentworkisofferedbyShivonZillisofBloombergBETAat:
/machineintelligence.
5
/2014/10/future-of-artificial-intelligence/
6
/fastft/2015/11/05/robotics-ai-become-153bn-market-20-bofa/,
/content/dam/boamlimages/documents/PDFs/robotics_andaicondensed_primer.pdf
7TheValueofBigDataandtheInternetofThingstotheUKEconomy,CEBRforSAS,February2016.8Bigdata:Thenextfrontierforinnovation,competition,andproductivity,McKinseyGlobalInstitute,2011.9Bakhshi,Bravo-BioscaandMateos-Garcia(2014)–fromDataDrivenInnovation(OECD).
10BundesministeriumfürBildungundForschung(2013),
Zukunftsbild“Industrie4.0”,
PwC
,Industry4.0:Building
thedigitalenterprise.
11McKinseyIndustry4.0GlobalExpertSurvey2015.
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
10
Theuseofartificialintelligencebygovernment
Governmentisalreadyusingdatasciencetechniquessuchasmachinelearning,andthroughtheworkoftheGovernmentDataProgrammetheiruseisgrowing
12
.Thesetechniquesareprovidinginsightsintoarangeofdata,fromfeedbackondigitalservicedeliverytoagriculturallandusethroughtheanalysissatelliteimages.Astheirsophisticationimprovesmorebenefitsmayberealised.Forexample,wemight:
.Makeexistingservices–suchashealth,socialcare,emergencyservices–moreefficientbyanticipatingdemandandtailoringservicesmoreexactly,enablingresourcestobe
deployedtogreatesteffect.
.Makeiteasierforofficialstousemoredatatoinformdecisions(throughquicklyaccessingrelevantinformation)andtoreducefraudanderror.
.Makedecisionsmoretransparent(perhapsthroughcapturingdigitalrecordsoftheprocessbehindthem,orbyvisualisingthedatathatunderpinsadecision).
.Helpdepartmentsbetterunderstandthegroupstheyserve,inordertobesurethattherightsupportandopportunityisofferedtoeveryone.
Otherapplicationswillbecomeapparentastheuseofdataandartificialintelligencebecomesmoremainstream.
Governmentisaspecialbody,withuniqueobligationsthatdonotfallonprivateorganisations.Itmustbetransparentaboutthewayitacts,followdueprocess,andbeaccountabletoits
citizens.Thismeanstherearespecialresponsibilitiesforgovernment,beyondthegeneralpointsoutlinedabove,whichfollowfromitsuseofartificialintelligenceandbigdata.
Recognisingthis,thegovernmenthaspublishedaguidetotheethicaluseofdatasciencetoolswithingovernmentforgovernmentanalysts
13
.Thisfirstiterationofacodeofpracticewas
developedwithextensiveexternalinputanditeratedwithdatascientistsinsidegovernmenttomakeitaspracticalandusefulaspossible.
Twouseswithparticularrelevanceforgovernmentarehighlightedhere:theuseofartificialintelligencetoadvise,andpossiblelegalimplicationsoftheuseofartificialintelligence.
Advice
Artificialintelligencehasaclearadvisoryroletoplaybeyondtraditional‘decision-support
systems’,supportingdecision-makingthroughassemblingrelevantdata,identifyingpertinentquestionsandtopicsfortheattentionofpolicy-makers,andinhelpingtogeneratewritten
advice.Already,governmentisbeginningtofindvalueinusingartificialintelligencetoassist
publicservantsinthedeliveryofdigitalservices.Itislikelythatmanytypesofgovernment
decisionswillbedeemedunsuitabletobehandedoverentirelytoartificialintelligencesystems.Therewillalwaysbea‘humanintheloop’.Thisperson'srole,however,isnotstraightforward.Iftheyneverquestiontheadviceofthemachine,thedecisionhasdefactobecomeautomaticandtheyoffernooversight.Iftheyquestiontheadvicetheyreceive,however,theymaybe
thoughtreckless,moresoifeventsshowtheirdecisiontobepoor.
12
.uk/category/data-science/
13
.uk/government/uploads/system/uploads/attachment_data/file/524298/Data_science_ethics
_framework_v1.0_for_publication1.pdf
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
11
Aswithanyadviser,theinfluenceofthesesystemsondecision-makerswillbequestioned,anddepartmentswillneedtobetransparentabouttheroleplayedbyartificialintelligenceintheir
decisions
Legalconstraints
Therearecurrentlyspecificlegalframeworks,inadditiontogenerallegislationsuchastheUKDataProtectionAct(1998)andtheEUGeneralDataProtectionRegulation(2016),thatgoverntheuseofcitizens’databygovernmentanalysts,protectingrightstoprivacy,ensuringequal
treatmentforall,andsafeguardingpersonalidentity.Theseareanessentialingredientin
maintainingpublictrustingovernment’sabilitytomanagedatasafely.Teamsmakinguseof
artificiallearningapproachesneedtounderstandhowtheseexistingframeworksapplyinthis
context.Forexample,ifdeeplearningisusedtoinferpersonaldetailsthatwerenotintentionallyshared,itmaynotbeclearwhetherconsenthasbeenobtained.
Thesecurrentprotectionsareeffectiveandwell-established.However,understandingthe
opportunitiesandrisksassociatedwithmoreadvancedartificialintelligencewillonlybepossiblethroughtrialsandexperimentation.Forgovernmentanalyststobeabletoexplorecuttingedgetechniquesitmaybedesirabletoestablishsandboxareaswherethepotentialofthistechnologycanbeinvestigatedinasafeandcontrolledenvironment.
Inadditiontothesethreeareas,theproductiveuseofartificialintelligenceingovernment
dependsonresolvingwiderdatascienceissues:skills,privacy,dataqualityandsoon.
TheworkoftheDataSciencePartnership,ledbytheGovernmentDigitalService(GDS),is
raisingtheawarenessofthepotentialofdatascienceacrossgovernment.Italsoprovidesafocalpointforsharingexperiencesandlessonslearnttopromoteinnovationandthespreadofbestpracticebetweendepartmentsandagencies.
Artificialintelligence:opportunitiesandimplicationsforthefutureofdecisionmaking
12
Effectsonlabourmarkets
Theemergenceofmachinelearning,aswellasrobotics,bigdataandautonomoussystems,islikelytohavesignificantimplicationsfortheeconomyandlabourmarkets.Thesetechnologiestogethercanbeseenaspartofanewwaveof‘generalpurpose’digitaltechnologies
14
,
comparabletothesteamengine,andthemovingassemblyline,withthepotentialtodrive
significantsocio-economicchange.Thereisevidencetosuggestthatthesetechnologiescould
driveproductivitygrowthandsoboosteconomicgrowth,butthereismuchuncertaintyaboutthescaleandthespeedofthesechanges.Theywilldependonboththepaceoftechnological
developmentandthespeedofitsdeploymentbyfirmsacrosstheeconomy.
Inparticular,thesetechnologiesmayhaveaparticularimpactonrolesintheservicesector,
which
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026山東事業(yè)單位統(tǒng)考濟(jì)南槐蔭區(qū)招聘初級(jí)綜合類崗位63人備考題庫有答案詳解
- 2026山東第一醫(yī)科大學(xué)附屬眼科醫(yī)院(山東省眼科醫(yī)院)招聘博士研究生人員5人備考題庫完整參考答案詳解
- 2026上半年云南事業(yè)單位聯(lián)考玉溪市招聘710人備考題庫完整答案詳解
- 2026山東聊城市新聊泰城市建設(shè)發(fā)展有限公司首批用人招聘10人備考題庫及答案詳解(新)
- 2026北京城市學(xué)院順義校區(qū)后勤處招聘備考題庫及一套完整答案詳解
- 2026中國電科十五所秋季校園招聘備考題庫及參考答案詳解1套
- 2026內(nèi)蒙古鄂爾多斯市東勝區(qū)實(shí)驗(yàn)小學(xué)招聘教師備考題庫及答案詳解1套
- 2026山東事業(yè)單位統(tǒng)考青島平度市招聘36人備考題庫及一套參考答案詳解
- 2026中國印鈔造幣集團(tuán)有限公司校園招聘12人備考題庫及答案詳解參考
- 2026年1月廣西桂林市灌陽縣人民醫(yī)院人才招聘11人備考題庫及答案詳解(奪冠系列)
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘備考題庫及答案詳解(奪冠系列)
- 成都高新區(qū)桂溪街道公辦幼兒園招聘編外人員考試備考題庫及答案解析
- 教育培訓(xùn)行業(yè)培訓(xùn)師績效考核表
- 城市更新培訓(xùn)課件
- 2026年度哈爾濱市第一??漆t(yī)院公開招聘編外合同制工作人員51人筆試備考試題及答案解析
- 2026年蘇州工業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫新版
- 九年級(jí)寒假期末總結(jié)課件
- 壓鑄機(jī)作業(yè)人員安全培訓(xùn)課件
- 我的Python世界(玩Minecraft我的世界學(xué)Python編程)
- 正確停車課件
- 2025年度呼吸內(nèi)科護(hù)士長述職報(bào)告
評(píng)論
0/150
提交評(píng)論