版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖,在平面直角坐標系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標為;點的坐標為;(2)當?shù)拿娣e是的面積的3倍時,求點的坐標;(3)設,,,判斷、、之間的數(shù)量關系,并說明理由.2.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內,;在內,,直線分別交、分別于點、,且,直接寫出的值.3.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.4.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據是;因為AB∥CD,PH∥AB,所以PH∥CD,依據是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關系.5.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關系.(注:此題說理時不能使用沒有學過的定理)6.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內一點,連HM,HN.(1)如圖1,延長HN至G,∠BMH和∠GND的角平分線相交于點E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點E.①請直接寫出∠MEN與∠MHN的數(shù)量關系:;②作MP平分∠AMH,NQ∥MP交ME的延長線于點Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運用①中的結論)7.(閱讀材料)數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:“39”.鄰座的乘客十分驚奇,忙間其中計算的奧妙.你知道怎樣迅速準確的計算出結果嗎?請你按下面的步驟試一試:第一步:∵,,,∴.∴能確定59319的立方根是個兩位數(shù).第二步:∵59319的個位數(shù)是9,∴能確定59319的立方根的個位數(shù)是9.第三步:如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3,因此59319的立方根是39.(解答問題)根據上面材料,解答下面的問題(1)求110592的立方根,寫出步驟.(2)填空:__________.8.規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.例如:因為23=8,所以(2,8)=3.(1)根據上述規(guī)定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:設(3n,4n)=x,則(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).請你嘗試運用上述這種方法說明下面這個等式成立的理由:(4,5)+(4,6)=(4,30)9.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動______位,其算術平方根的小數(shù)點向______移動______位.(2)已知,,則_____;______.(3),,,……小數(shù)點的變化規(guī)律是_______________________.(4)已知,,則______.10.對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“夢幻數(shù)”,將一個“夢幻數(shù)”任意兩個數(shù)位上的數(shù)字對調后可以得到三個不同的新三數(shù),把這三個新三位數(shù)的和與111的商記為K(n),例如,對調百位與十位上的數(shù)字得到213,對調百位與個位上的數(shù)字得到321,對調十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為,,所以.(1)計算:和;(2)若x是“夢幻數(shù)”,說明:等于x的各數(shù)位上的數(shù)字之和;(3)若x,y都是“夢幻數(shù)”,且,猜想:________,并說明你猜想的正確性.11.對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對a連續(xù)求根整數(shù),直到結果為1為止.例如:對10連續(xù)求根整數(shù)2次=1,這時候結果為1.(3)對100連續(xù)求根整數(shù),____次之后結果為1.(4)只需進行3次連續(xù)求根整數(shù)運算后結果為1的所有正整數(shù)中,最大的是____.12.對于有理數(shù)、,定義了一種新運算“※”為:如:,.(1)計算:①______;②______;(2)若是關于的一元一次方程,且方程的解為,求的值;(3)若,,且,求的值.13.如圖①,在平面直角坐標系中,點,,其中,是16的算術平方根,,線段由線段平移所得,并且點與點A對應,點與點對應.(1)點A的坐標為;點的坐標為;點的坐標為;(2)如圖②,是線段上不同于的任意一點,求證:;(3)如圖③,若點滿足,點是線段OA上一動點(與點、A不重合),連交于點,在點運動的過程中,是否總成立?請說明理由.14.已知,AB∥CD,點E在CD上,點G,F(xiàn)在AB上,點H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).15.在平面直角坐標系中,已知線段,點的坐標為,點的坐標為,如圖1所示.(1)平移線段到線段,使點的對應點為,點的對應點為,若點的坐標為,求點的坐標;(2)平移線段到線段,使點在軸的正半軸上,點在第二象限內(與對應,與對應),連接如圖2所示.若表示△BCD的面積),求點、的坐標;(3)在(2)的條件下,在軸上是否存在一點,使表示△PCD的面積)?若存在,求出點的坐標;若不存在,請說明理由.16.我們定義,關于同一個未知數(shù)的不等式和,若的解都是的解,則稱與存在“雅含”關系,且不等式稱為不等式的“子式”.如,,滿足的解都是的解,所以與存在“雅含”關系,是的“子式”.(1)若關于的不等式,,請問與是否存在“雅含”關系,若存在,請說明誰是誰的“子式”;(2)已知關于的不等式,,若與存在“雅含”關系,且是的“子式”,求的取值范圍;(3)已知,,,,且為整數(shù),關于的不等式,,請分析是否存在,使得與存在“雅含”關系,且是的“子式”,若存在,請求出的值,若不存在,請說明理由.17.如圖1,在直角坐標系中直線與、軸的交點分別為,,且滿足.(1)求、的值;(2)若點的坐標為且,求的值;(3)如圖2,點坐標是,若以2個單位/秒的速度向下平移,同時點以1個單位/秒的速度向左平移,平移時間是秒,若點落在內部(不包含三角形的邊),求的取值范圍.18.在平面直角坐標系中,,滿足.(1)直接寫出、的值:;;(2)如圖1,若點滿足的面積等于6,求的值;(3)設線段交軸于C,動點E從點C出發(fā),在軸上以每秒1個單位長度的速度向下運動,動點F從點出發(fā),在軸上以每秒2個單位長度的速度向右運動,若它們同時出發(fā),運動時間為秒,問為何值時,有?請求出的值.19.題目:滿足方程組的x與y的值的和是2,求k的值.按照常規(guī)方法,順著題目思路解關于x,y的二元一次方程組,分別求出xy的值(含有字母k),再由x+y=2,構造關于k的方程求解,從而得出k值.(1)某數(shù)學興趣小組對本題的解法又進行了探究利用整體思想,對于方程組中每個方程變形得到“x+y”這個整體,或者對方程組的兩個方程進行加減變形得到“x+y”整體值,從而求出k值請你運用這種整體思想的方法,完成題目的解答過程.(2)小勇同學的解答是:觀察方程①,令3x=k,5y=1解得y=,3x+y=2,∴x=∴k=3×=把x=,y=代入方程②得k=﹣所以k的值為或﹣.請診斷分析并評價“小勇同學的解答”.20.閱讀下面資料:小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B2AB,B1C2BC,C1A2CA,根據等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個問題.(1)直接寫出S1(用含字母a的式子表示).請參考小明同學思考問題的方法,解決下列問題:(2)如圖3,P為△ABC內一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標明,求△ABC的面積.(3)如圖4,若點P為△ABC的邊AB上的中線CF的中點,求S△APE與S△BPF的比值.21.如圖,已知和的度數(shù)滿足方程組,且.(1)分別求和的度數(shù);(2)請判斷與的位置關系,并說明理由;(3)求的度數(shù).22.數(shù)軸上有兩個動點M,N,如果點M始終在點N的左側,我們稱作點M是點N的“追趕點”.如圖,數(shù)軸上有2個點A,B,它們表示的數(shù)分別為-3,1,已知點M是點N的“追趕點”,且M,N表示的數(shù)分別為m,n.(1)由題意得:點A是點B的“追趕點”,AB=1-(-3)=4(AB表示線段AB的長,以下相同);類似的,MN=____________.(2)在A,M,N三點中,若其中一個點是另外兩個點所構成線段的中點,請用含m的代數(shù)式來表示n.(3)若AM=BN,MN=BM,求m和n值.23.對于不為0的一位數(shù)和一個兩位數(shù),將數(shù)放置于兩位數(shù)之前,或者將數(shù)放置于兩位數(shù)的十位數(shù)字與個位數(shù)字之間就可以得到兩個新的三位數(shù),將較大三位數(shù)減去較小三位數(shù)的差與15的商記為.例如:當,時,可以得到168,618.較大三位數(shù)減去較小三位數(shù)的差為,而,所以.(1)計算:.(2)若是一位數(shù),是兩位數(shù),的十位數(shù)字為(,為自然數(shù)),個位數(shù)字為8,當時,求出所有可能的,的值.24.在平面直角坐標系中,點,點,點.(1)的面積為______;(2)已知點,,那么四邊形的面積為______.(3)奧地利數(shù)學家皮克發(fā)現(xiàn)了一類快速求解格點多邊形的方法,被稱為皮克定理:如果用m表示格點多邊形內的格點數(shù),n表示格點多邊形邊上的格點數(shù),那么格點多邊形的面積S和m與n之間滿足一種數(shù)量關系.例如剛剛求解的幾個多邊形面積中,我們可以得到如表中信息:形內格點數(shù)m邊界格點數(shù)n格點多邊形面積S611四邊形811五邊形208根據上述的例子,猜測皮克公式為______(用m,n表示),試計算圖②中六邊形的面積為______(本大題無需寫出解題過程,寫出正確答案即可).25.某加工廠用52500元購進A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質,該加工廠需盡快將這批原料運往有保質條件的倉庫儲存.經市場調查獲得以下信息:①將原料運往倉庫有公路運輸與鐵路運輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運輸方式的運輸單價不同(單價:每噸每千米所收的運輸費);③公路運輸時,每噸每千米還需加收1元的燃油附加費;④運輸還需支付原料裝卸費:公路運輸時,每噸裝卸費100元;鐵路運輸時,每噸裝卸費220元.(1)加工廠購進A、B兩種原料各多少噸?(2)由于每種運輸方式的運輸能力有限,都無法單獨承擔這批原料的運輸任務.加工廠為了盡快將這批原料運往倉庫,決定將A原料選一種方式運輸,B原料用另一種方式運輸,哪種方案運輸總花費較少?請說明理由.26.在平面直角坐標系中,點,,的坐標分別為,,,且,滿足方程為二元一次方程.(1)求,的坐標.(2)若點為軸正半軸上的一個動點.①如圖1,當時,與的平分線交于點,求的度數(shù);②如圖2,連接,交軸于點.若成立.設動點的坐標為,求的取值范圍.27.已知關于x、y的二元一次方程(1)若方程組的解x、y滿足,求a的取值范圍;(2)求代數(shù)式的值.28.閱讀理解:定義:,,為數(shù)軸上三點,若點到點的距離是它到點的時距離的(為大于1的常數(shù))倍,則稱點是的倍點,且當是的倍點或的倍點時,我們也稱是和兩點的倍點.例如,在圖1中,點是的2倍點,但點不是的2倍點.(1)特值嘗試.①若,圖1中,點______是的2倍點.(填或)②若,如圖2,,為數(shù)軸上兩個點,點表示的數(shù)是,點表示的數(shù)是4,數(shù)______表示的點是的3倍點.(2)周密思考:圖2中,一動點從出發(fā),以每秒2個單位的速度沿數(shù)軸向左運動秒,若恰好是和兩點的倍點,求所有符合條件的的值.(用含的式子表示)(3)拓展應用數(shù)軸上兩點間的距離不超過30個單位長度時,稱這兩點處于“可視距離”.若(2)中滿足條件的和兩點的所有倍點均處于點的“可視距離”內,請直接寫出的取值范圍.(不必寫出解答過程)29.某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A、B兩種型號的電風扇的銷售單價;(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.30.如圖,在平面直角坐標系中,點O為坐標原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標;(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應點分別為點P和點Q(點P與點B不重合),設點P的縱坐標為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1),;(2)點D的坐標為或;(3)之間的數(shù)量關系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質確定BC∥OA,且BC=OA,可得結論;(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設點D的坐標為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當點D在線段OA上時,由,得解得∴點D的坐標為②如圖2,當點D在OA得延長線上時,由,得解得∴點D的坐標為綜上,點D的坐標為或.(3)①如圖1,當點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標和三角形面積的計算方法,平移得性質,平行線的性質和判定,解題的關鍵是分點D在線段OA上,和OA延長線上兩種情況.2.(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進而求解;(3)設直線FK與EG交于點H,F(xiàn)K與AB交于點K,根據平行線的性質即三角形外角的性質及,可得,結合,可得即可得關于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設直線FK與EG交于點H,F(xiàn)K與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內,∴,∵∴∴即∴解得.經檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質,角平分線的定義,靈活運用平行線的性質是解題的關鍵.3.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據角平分線求得,再根據平行線的性質得到;進一步求得,,然后根據三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質及應用,正確作出輔助線、構造平行線、再利用平行線性質進行求解是解答本題的關鍵.4.(1)兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據平行線的判定與性質即可完成填空;(2)結合(1)的輔助線方法即可完成證明;(3)結合(1)(2)的方法,根據∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據是兩直線平行,內錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質.熟練運用平行線性質和判定,添加適當輔助線是關鍵.5.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質得到∠APM=∠PMQ,再根據已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質,熟練掌握兩直線平行,內錯角相等;兩直線平行,同旁內角互補;兩直線平行,同位角相等等知識是解題的關鍵.6.(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質、角平分線性質、鄰補角和為180°,角與角之間的基本運算、等量代換等即可得證.(2)①過點H作GI∥AB,利用(1)中結論2∠MEN﹣∠MHN=180°,利用平行線的性質、角平分線性質、鄰補角和為180°,角與角之間的基本運算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進而用等量代換得出2∠MEN+∠MHN=360°.②過點H作HT∥MP,由①的結論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質及鄰補角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點E作EP∥AB交MH于點Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內錯角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點H作HT∥MP.如答圖2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內角互補).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點睛】本題考查了平行線的性質,角平分線的性質,鄰補角,等量代換,角之間的數(shù)量關系運算,輔助線的作法,正確作出輔助線是解題的關鍵,本題綜合性較強.7.(1)48;(2)28【分析】(1)根據題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據第二和第三步求出個位數(shù)和十位數(shù)即可.(2)根據題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據第二和第三步求出個位數(shù)和十位數(shù)即可.【詳解】解:(1)第一步:,,,,能確定110592的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定110592的立方根的個位數(shù)是8.第三步:如果劃去110592后面的三位592得到數(shù)110,而,則,可得,由此能確定110592的立方根的十位數(shù)是4,因此110592的立方根是48;(2)第一步:,,,,能確定21952的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定21952的立方根的個位數(shù)是8.第三步:如果劃去21952后面的三位952得到數(shù)21,而,則,可得,由此能確定21952的立方根的十位數(shù)是2,因此21952的立方根是28.即,故答案為:28.【點睛】本題主要考查了數(shù)的立方,理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù)是解題的關鍵,有一定難度.8.(1)3,0,-2(2)(4,30)【解析】分析:(1)根據閱讀材料,應用規(guī)定的運算方式計算即可;(2)應用規(guī)定和同底數(shù)冪相乘的性質逆用變形計算即可.詳解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=∴(2,)=-2(2)設(4,5)=x,(4,6)=y則,=6∴∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)點睛:此題是一個規(guī)定計算的應用型的題目,關鍵是靈活應用規(guī)定的關系式計算,熟練記憶冪的相關性質.9.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結果;(3)歸納總結得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動兩位,其算術平方根的小數(shù)點向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點的變化規(guī)律是:被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點睛】此題考查了立方根,以及算術平方根,弄清題中的規(guī)律是解本題的關鍵.10.(1);(2)見解析;(3)【分析】(1)根據的定義,可以直接計算得出;(2)設,得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可以得到:;(3)根據(2)中的結論,猜想:.【詳解】解:(1)已知,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,;同樣,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,.(2)設,得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可得到:,即等于x的各數(shù)位上的數(shù)字之和.(3)設,由(2)的結論可以得到:,,,根據三位數(shù)的特點,可知必然有:,,故答案是:.【點睛】此題考查了多位數(shù)的數(shù)字特征,每個數(shù)字是10以內的自然數(shù)且不為0,解題的關鍵是:結合新定義,可以計算出問題的解,注意把握每個數(shù)字都會出現(xiàn)一次的特點,區(qū)別數(shù)字與多為數(shù)的不同.11.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結果;(2)根據定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據定義對120進行連續(xù)求根整數(shù),可得3次之后結果為1;(4)最大的正整數(shù)是255,根據操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點睛】本題考查了估算無理數(shù)的大小的應用,主要考查學生的閱讀能力和猜想能力,同時也考查了一個數(shù)的平方數(shù)的計算能力.12.(1)①5;②;(2)1;(3)16.【分析】(1)根據題中定義代入即可得出;(2)根據,討論3和的兩種大小關系,進行計算;(3)先判定A、B的大小關系,再進行求解.【詳解】(1)根據題意:∵,∴,∵,∴.(2)∵,∴,①若,則,解得,②若,則,解得(不符合題意),∴.(3)∵,∴,∴,得,∴.【點睛】本題考查了一種新運算,讀懂題意掌握新運算并能正確化簡是解題的關鍵.13.(1),,;(2)證明見解析;(3)成立,理由見解析【分析】(1)根據算術平方根、立方根得、;再根據直角坐標系、平移的性質分析,即可得到答案;(2)根據平移的性質,得;根據平行線性質,分別推導得,,從而完成證明;(3)結合題意,根據平行線的性質,推導得、;結合(2)的結論,通過計算即可完成證明.【詳解】(1)連接∵是16的算術平方根∴∴∴∵∴∴∴∵線段由線段平移所得,并且點與點A對應,點與點對應∴,∴故答案為:,,;(2)∵線段由線段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結論得:,∵,∴∴∵∴∴∴在點運動的過程中,總成立.【點睛】本題考查了算術平方根、立方根、平行線、平移、直角坐標系的知識;解題的關鍵是熟練掌握直角坐標系、平移、平行線的性質,從而完成求解.14.(1)見解析;(2)見解析;(3)40°【分析】(1)根據平行線的性質和判定解答即可;(2)過點H作HP∥AB,根據平行線的性質解答即可;(3)過點H作HP∥AB,根據平行線的性質解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點M作MQ∥AB,過點H作HP∥AB,由∠KFE:∠MGH=13:5,設∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點睛】本題考查了平行線的判定與性質,熟練掌握平行線的判定與性質定理以及靈活構造平行線是解題的關鍵.15.(1);(2);(3)存在點,其坐標為或.【分析】(1)利用平移得性質確定出平移得單位和方向;(2)根據平移得性質,設出平移單位,根據S△BCD=7(S△BCD建立方程求解,即可);(3)設出點P的坐標,表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應點,∴設,∴即線段向左平移5個單位,再向上平移4個單位得到線段∴點平移后的對應點;(2)∵點C在軸上,點D在第二象限,∴線段向左平移3個單位,再向上平移個單位,∴連接,,∴∴;(3)存在設點,∴∵,∴∴,∴∴存在點,其坐標為或.【點睛】本題考查了線段平移的性質,解題的關鍵在利用平移的性質,得到點坐標的關系、圖形面積的關系,根據面積的關系,從而求出點的坐標.16.(1)A與B存在“雅含”關系,B是A的“子式”;(2);(3)存在,.【分析】(1)根據“雅含”關系的定義即可判斷;(2)先求出解集,根據“雅含”關系的定義得出,解不等式即可;(3)首先解關于的方程組即可求得的值,然后根據,,且為整數(shù)即可得到一個關于的范圍,從而求得的整數(shù)值.【詳解】解:(1)不等式A:x+2>1的解集為,∵∴A與B存在“雅含”關系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,∵與存在“雅含”關系,且是的“子式”,∴,解得:,(3)存在;由解得:,∵,,即:,解得:,∵為整數(shù),∴的值為,解不等式得:,解不等式得:,∵與存在“雅含”關系,且是的“子式”,∴不等式的解集為:,∴,且,解得:,∴.【點睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小無解.17.(1),;(2)或;(3)【分析】(1)根據非負數(shù)和為0,則每一個非負數(shù)都是0,即可求出a,b的值;(2)設直線AB與直線x=1交于點N,可得N(1,5),根據S△ABM=S△AMN?S△BMN,即可表示出S△ABM,從而列出m的方程.(3)根據題意知,臨界狀態(tài)是點P落在OA和AB上,分別求出此時t的值,即可得出范圍.【詳解】(1)∵,,∴,解得:,(2)設直線與直線交于,設∵a=?4,b=4,∴A(?4,0),B(0,4),設直線AB的函數(shù)解析式為:y=kx+b,代入得,解得∴直線AB的函數(shù)解析式為:y=x+4,代入x=1得∵∴=×5×|5?m|?×1×|5?m|=2|5?m|,∵∴∴或解得:或,(3)當點P在OA邊上時,則2t=2,∴t=1,當點P在AB邊上時,如圖,過點P作PKx軸,AK⊥x軸交于K,則KP'=3?t,KA'=2t?2,∴3?t=2t?2,∴綜上所述:.【點睛】本題主要考查了平移的性質、一般三角形面積的和差表示、以及非負數(shù)的性質等知識點,第(2)問中用絕對值來表示動點構成的線段長度是正確解題的關鍵.18.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過點作直線軸,延長交于,設出點坐標,根據面積關系求出點坐標,再求出的長度,即可求出值;(3)先根據求出點坐標,再根據面積關系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過作直線垂直于軸,延長交直線于點,設的坐標為,過作交直線于點,連接,,,,解得,,,又點滿足的面積等于6,,解得或;(3)如圖2,延長交軸于,過作軸于,過作軸于,,,解得,,,,解得,,,,由題知,當秒時,,,,,,,,解得或2.【點睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標系的知識,三角形的面積,梯形面積等知識是解題的關鍵.19.(1);(2)“小勇同學的解答”錯誤,診斷分析和評價見解析【分析】(1)由兩種方法分別得出2=5-5k,求解即可;(2)從二元一次方程的解和二元一次方程組的解的概念進行診斷分析,再從創(chuàng)新的角度進行評價即可.【詳解】解:(1)方法一:②×2得:4x+6y=6-4k③,由③-①得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=,方法二:由①-②得:x+2y=3k-2③,由②-③得:x+y=5-5k,∵x+y=2,∴2=5-5k,解得:k=;(2)“小勇同學的解答”錯誤,理由如下:∵令3x=k,5y=1,求出的x、y的值只是方程①的一個解,而方程①有無數(shù)個解,根據方程組的解的概念,僅有方程①或方程②的某一個解中的x、y求出的k值不一定適合方程組中的另一個方程;只有當方程①、②取公共解時,k和x、y之間對應的數(shù)量關系才能成立,這時,求得的k=才是正確答案;另一方面,小勇的解答雖然錯誤,但他的思維給我們有創(chuàng)新的感覺,也讓我們鞏固加深了對方程組解的概念的連接,同時啟發(fā)我們平時在學習中,要善于多角度去探索問題,尋求新穎的解題方法.【點睛】本題考查了二元一次方程組的應用、二元一次方程的解、一元一次方程的解法以及整體思想的應用等知識;熟練掌握二元一次方程組的解法,由整體思想得出2=5-5k是解題的關鍵.20.(1)19a;(2)315;(3).【解析】【分析】(1)首先根據題意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,則可求得面積S1的值;(2)根據等高不等底的三角形的面積的比等于底邊的比,求解,從而不難求得△ABC的面積;(3)設S△BPF=m,S△APE=n,依題意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,從而求解.【詳解】解:(1)連接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案為:19a;(2)過點作于點,設,,;,.,即.同理,...①,,.②由①②,得,.(3)設,,如圖所示.依題意,得,..,.,,...【點睛】此題考查了三角形面積之間的關系.(2)的關鍵是設出未知三角形的面積,然后根據等高不等底的三角形的面積的比等于底邊的比列式求解.21.(1);(2),理由詳見解析;(3)40°【分析】(1)利用加減消元法,通過解二元一次方程組可求出和的度數(shù);(2)利用求得的和的度數(shù)可得到,于是根據平行線的判定可判斷AB∥EF,然后利用平行的傳遞性可得到AB∥CD;(3)先根據垂直的定義得到,再根據平行線的性質計算的度數(shù).【詳解】解(1)解方程組,①-②得:,解得:把代入②得:解得:;(2),理由:∵,,,(同旁內角互補,兩直線平行),又,;(3),.【點睛】本題考查了平行線的性質與判定、解二元一次方程組,熟練掌握平行線的性質和判定定理是解題關鍵.22.(1)n-m;(2)①M是AN的中點,n=2m+3;②A是MN中點,n=-m-6;③N是AM的中點,;(3)或或.【分析】(1)由兩點間距離直接求解即可;(2)分三種情況討論:①M是A、N的中點,n=2m+3;②當A點在M、N點中點時,n=﹣6﹣m;③N是M、A的中點時,n;(3)由已知可得|m+3|=|n﹣1|,n﹣m|m+3|,分情況求解即可.【詳解】(1)MN=n﹣m.故答案為:n﹣m;(2)分三種情況討論:①M是A、N的中點,∴n+(-3)=2m,∴n=2m+3;②A是M、N點中點時,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中點時,-3+m=2n,∴n;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MNBM,∴n﹣m|m+3|,∴或或或,∴或或或.∵n>m,∴或或.【點睛】本題考查了列代數(shù)式,解二元一次方程組以及數(shù)軸上兩點間的距離公式,解答本題的關鍵是:(1)根據兩點間的距離公式求出線段AB的長;(2)分三種情況討論;(3)分四種情況討論.解決該題型題目時,結合數(shù)量關系表示出線段的長度,再根據線段間的關系列出方程是關鍵.23.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三種情形討論計算.【詳解】(1)當,時,可以得到217,127.較大三位數(shù)減去較小三位數(shù)的差為,而,∴.(2)當,時,可以得a50,5a0.三位數(shù)分別為100a+50,500+10a,當1≤a<5時,(500+10a)-(100a+50)=450-90a,而,∴=,∴=;當a=5時,(500+10a)-(100a+50)=0,而,∴=0,∴=0;當5<a≤9時,(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;當,時,可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;當1≤a<5時,5-a+27-3x=8,∴a+3x=24,∴當a=1時,x=(舍去),當a=2時,x=(舍去),當a=3時,x=7,當a=4時,x=(舍去),∴a=3,b=78;當a=5時,則27-3x=8,∴x=(舍去),當5<a≤9時,則a-5+27-3x=8,∴3x-a=14,∴當a=6時,x=(舍去),當a=7時,x=7,當a=8時,x=(舍去),當a=9時,x=(舍去),∴a=7,b=78;綜上所述,a=3,b=78或a=7,b=78.【點睛】本題考查了新定義問題和二元一次方程的整數(shù)解,準確理解新定義的意義,靈活運用分類思想和枚舉法是解題的關鍵.24.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據三角形的面積公式求解;(2)畫出圖形,利用割補法求解;(3)設S=am+bn+c,其中a,b,c為常數(shù),根據表中數(shù)據列方程組求出a,b,c,然后根據公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內格點數(shù)m邊界格點數(shù)n格點多邊形面積S61110.5四邊形81112.5五邊形20823設S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點睛】本題考查了坐標與圖形的性質,三角形的面積,三元一次方程組的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.25.(1)加工廠購進A種原料25噸,B種原料15噸;(2)當m﹣n<0,即a<b時,方案一運輸總花費少,當m﹣n=0,即a=b時,兩種運輸總花費相等,當m﹣n>0,即a>b時,方案二運輸總花費少,見解析【分析】(1)設加工廠購進種原料噸,種原料噸,由題意:某加工廠用52500元購進、兩種原料共40噸,其中原料每噸1500元,原料每噸1000元.列方程組,解方程組即可;(2)設公路運輸?shù)膯蝺r為元,鐵路運輸?shù)膯蝺r為元,有兩種方案,方案一:原料公路運輸,原料鐵路運輸;方案二:原料鐵路運輸,原料公路運輸;設方案一的運輸總花費為元,方案二的運輸總花費為元,分別求出、,再分情況討論即可.【詳解】解:(1)設加工廠購進種原料噸,種原料噸,由題意得:,解得:,答:加工廠購進種原料25噸,種原料15噸;(2)設公路運輸?shù)膯蝺r為元,鐵路運輸?shù)膯蝺r為元,根據題意,有兩種方案,方案一:原料公路運輸,原料鐵路運輸;方案二:原料鐵路運輸,原料公路運輸;設方案一的運輸總花費為元,方案二的運輸總花費為元,則,,,當,即時,方案一運輸總花費少,即原料公路運輸,原料鐵路運輸,總花費少;當,即時,兩種運輸總花費相等;當,即時,方案二運輸總花費少,即原料鐵路運輸,原料公路運輸,總花費少.【點睛】本題考查了一元一次不等式的應用、二元一次方程組的應用等知識;解題的關鍵是:(1)找準等量關系,列出二元一次方程組;(2)找出數(shù)量關系,列出一元一次不等式或一元一次方程.26.(1)點的坐標為,點的坐標為;(2)①45°;②【分析】(1)根據可得,,,,即可求得a、c的值,坐標可求;2)①作PH∥AD,根據角平分線的定義、平行線的性質計算,得到答案;②連接AB,交y軸于F,根據
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 華苑園林面試題庫及答案
- 中醫(yī)診斷學習題(附參考答案)
- 教育教學理論考試試題與答案
- 中醫(yī)學臨床題庫及答案
- 公務員考試(時事熱點)經典試題及答案(湖南省懷化市2025年)
- 漢中市西鄉(xiāng)縣輔警考試公安基礎知識考試真題庫及參考答案
- 大學醫(yī)藥考試試題及答案
- 《職業(yè)衛(wèi)生》模擬考試題與參考答案
- 法律常識題庫及答案
- 2025年黨建工作知識競賽測試題庫附答案
- 中國危重癥患者營養(yǎng)支持治療指南(2025年)
- 消防聯(lián)動排煙天窗施工方案
- 二手房提前交房協(xié)議書
- 2025年高考物理 微專題十 微元法(講義)(解析版)
- 2025年國家能源投資集團有限責任公司校園招聘筆試備考題庫含答案詳解(新)
- 形位公差培訓講解
- 醫(yī)學影像肺部結節(jié)診斷與處理
- 藥店物價收費員管理制度
- 數(shù)據風險監(jiān)測管理辦法
- 2025年數(shù)字經濟下靈活就業(yè)發(fā)展研究報告-新京報-202605
- 兒童語言發(fā)育遲緩課件
評論
0/150
提交評論