版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省長治市屯留縣一中2025屆數(shù)學(xué)高一下期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在天氣預(yù)報(bào)中,有“降水概率預(yù)報(bào)”,例如預(yù)報(bào)“明天降水的概率為”,這是指()A.明天該地區(qū)有的地方降水,有的地方不降水B.明天該地區(qū)有的時(shí)間降水,其他時(shí)間不降水C.明天該地區(qū)降水的可能性為D.氣象臺的專家中有的人認(rèn)為會降水,另外有的專家認(rèn)為不降水2.在中,內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c依次成等差數(shù)列,,,依次成等比數(shù)列,則的形狀為()A.等邊三角形 B.等腰直角三角形C.鈍角三角形 D.直角邊不相等的直角三角形3.已知,則的值域?yàn)椋ǎ〢. B. C. D.4.過點(diǎn)且與直線垂直的直線方程為()A. B.C. D.5.在中,分別為角的對邊),則的形狀是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形6.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P﹣ABCD為陽馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點(diǎn),則異面直線AB與CE所成角的正弦值為()A. B. C. D.7.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移個單位長度B.向左平移個單位長度C.向右平移個單位長度D.向右平移個單位長度8.已知直線,平面,給出下列命題:①若,且,則②若,且,則③若,且,則④若,且,則其中正確的命題是()A.①③ B.②④ C.③④ D.①②9.已知中,,,點(diǎn)是的中點(diǎn),是邊上一點(diǎn),則的最小值是()A. B. C. D.10.在等差數(shù)列中,如果,則數(shù)列前9項(xiàng)的和為()A.297 B.144 C.99 D.66二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)的圖象上每一點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變;再向右平移個單位長度得到的圖象,則_________.12.設(shè)函數(shù),則使得成立的的取值范圍是_______________.13.若,則的值為_______.14.若,,則___________.15.已知滿足約束條件,則的最大值為__16.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓C過點(diǎn),且圓心C在直線上.(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)(2,3)的直線被圓C所截得的弦的長是,求直線的方程.18.對于定義域相同的函數(shù)和,若存在實(shí)數(shù),使,則稱函數(shù)是由“基函數(shù),”生成的.(1)若函數(shù)是“基函數(shù),”生成的,求實(shí)數(shù)的值;(2)試?yán)谩盎瘮?shù),”生成一個函數(shù),且同時(shí)滿足:①是偶函數(shù);②在區(qū)間上的最小值為.求函數(shù)的解析式.19.某網(wǎng)站推出了關(guān)于掃黑除惡情況的調(diào)查,調(diào)查數(shù)據(jù)表明,掃黑除惡仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注掃黑除惡的人群中隨機(jī)選出人,并將這人按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)求出的值;(2)求這人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位).20.某工廠新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行銷售,得到如下數(shù)據(jù):單價(jià)(元)88.28.48.68.89銷量(件)908483807568(1)求銷量(件)關(guān)于單價(jià)(元)的線性回歸方程;(2)若單價(jià)定為10元,估計(jì)銷量為多少件;(3)根據(jù)銷量關(guān)于單價(jià)的線性回歸方程,要使利潤最大,應(yīng)將價(jià)格定為多少?參考公式:,.參考數(shù)據(jù):,21.已知函數(shù)f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求實(shí)數(shù)k的取值范圍;(2)當(dāng)x∈(m>0,n>0)時(shí),函數(shù)g(x)=tf(x)+1(t≥0)的值域?yàn)閇2-3m,2-3n],求實(shí)數(shù)t的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
預(yù)報(bào)“明天降水的概率為”,屬于隨機(jī)事件,可能下雨,也可能不下雨,即可得到答案.【詳解】由題意,天氣預(yù)報(bào)中,有“降水概率預(yù)報(bào)”,例如預(yù)報(bào)“明天降水的概率為”,這是指明天下雨的可能性是,故選C.【點(diǎn)睛】本題主要考查了隨機(jī)事件的概念及其概率,其中正確理解隨機(jī)事件的概率的概念是解答此類問題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.2、A【解析】
根據(jù)a,b,c依次成等差數(shù)列,,,依次成等比數(shù)列,利用等差、等比中項(xiàng)的性質(zhì)可知,根據(jù)基本不等式求得a=c,判斷出a=b=c,推出結(jié)果.【詳解】由a,b,c依次成等差數(shù)列,有2b=a+c(1)由,,成等比數(shù)列,有(2),由(1)(2)得,又根據(jù),當(dāng)a=c時(shí)等號成立,∴可得a=c,∴,綜上可得a=b=c,所以△ABC為等邊三角形.故選:A.【點(diǎn)睛】本題考查三角形的形狀判斷,結(jié)合等差、等比數(shù)列性質(zhì)及基本不等式關(guān)系可得三邊關(guān)系,從而求解,考查綜合分析能力,屬于中等題.3、C【解析】
由已知條件,先求出函數(shù)的周期,由于,即可求出值域.【詳解】因?yàn)?,所以,又因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以的值域?yàn)?故選:C.【點(diǎn)睛】本題考查三角函數(shù)的值域,利用了正弦函數(shù)的周期性.4、A【解析】
先根據(jù)求出與之垂直直線的斜率,再利用點(diǎn)斜式求得直線方程?!驹斀狻坑煽傻弥本€斜率,根據(jù)兩直線垂直的關(guān)系,求得,再利用點(diǎn)斜式,可求得直線方程為,化簡得,選A【點(diǎn)睛】當(dāng)直線斜率存在時(shí),直線垂直的斜率關(guān)系為5、A【解析】
根據(jù)正弦定理得到,化簡得到,得到,得到答案.【詳解】,則,即,即,,故,.故選:.【點(diǎn)睛】本題考查了正弦定理判斷三角形形狀,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.6、B【解析】
由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點(diǎn)睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、D【解析】
試題分析:將函數(shù)的圖象向右平移,可得,故選D.考點(diǎn):圖象的平移.8、A【解析】
根據(jù)面面垂直,面面平行的判定定理判斷即可得出答案。【詳解】①若,則在平面內(nèi)必有一條直線使,又即,則,故正確。②若,且,與可平行可相交,故錯誤③若,即又,則,故正確④若,且,與可平行可相交,故錯誤所以①③正確,②④錯誤故選A【點(diǎn)睛】本題考查面面垂直,面面平行的判定,屬于基礎(chǔ)題。9、B【解析】
通過建系以及數(shù)量積的坐標(biāo)運(yùn)算,從而轉(zhuǎn)化為函數(shù)的最值問題.【詳解】根據(jù)題意,建立圖示直角坐標(biāo)系,,,則,,,.設(shè),則,是邊上一點(diǎn),當(dāng)時(shí),取得最小值,故選.【點(diǎn)睛】本題主要考察解析法在向量中的應(yīng)用,將平面向量的數(shù)量積轉(zhuǎn)化成了函數(shù)的最值問題.10、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點(diǎn):等差數(shù)列性質(zhì)及前n項(xiàng)和點(diǎn)評:本題考查了等差數(shù)列性質(zhì)及前n項(xiàng)和,掌握相關(guān)公式及性質(zhì)是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由條件根據(jù)函數(shù)的圖象變換規(guī)律,,可得的解析式,從而求得的值.【詳解】將函數(shù)向左平移個單位長度可得的圖象;保持縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的倍可得的圖象,故,所以.【點(diǎn)睛】本題主要考查函數(shù))的圖象變換規(guī)律,屬于中檔題.12、【解析】
根據(jù)函數(shù)的表達(dá)式判斷出函數(shù)為偶函數(shù),判斷函數(shù)在的單調(diào)性為遞增,根據(jù)偶函數(shù)的對稱性可得,解絕對值不等式即可.【詳解】解:,定義域?yàn)?因?yàn)?,所以函?shù)為偶函數(shù).當(dāng)時(shí),易知函數(shù)在為增函數(shù),根據(jù)偶函數(shù)的性質(zhì)可知:由可知,所以,解得:或.故答案為:.【點(diǎn)睛】本題考查偶函數(shù)的性質(zhì)和利用偶函數(shù)對稱性的特點(diǎn)解決問題,屬于基礎(chǔ)題.13、【解析】
把已知等式展開利用二倍角余弦公式及兩角和的余弦公式,整理后兩邊平方求解.【詳解】解:由,得,,則,兩邊平方得:,即.故答案為.【點(diǎn)睛】本題考查三角函數(shù)的化簡求值,考查倍角公式的應(yīng)用,是基礎(chǔ)題.14、【解析】
將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【點(diǎn)睛】本題考查利用兩角和的正弦公式求值,解題的關(guān)鍵就是將等式進(jìn)行平方,結(jié)合等式結(jié)構(gòu)進(jìn)行變形計(jì)算,考查運(yùn)算求解能力,屬于中等題.15、【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過時(shí),直線在軸上的截距最大,所以有最大值為.故答案為1.【點(diǎn)睛】本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
由已知求得母線長,代入圓錐側(cè)面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π.故答案為:2π.【點(diǎn)睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】
(1)設(shè)圓心,由兩點(diǎn)間的距離及圓心在直線上,列出方程組,求解即可求出圓心坐標(biāo),進(jìn)而求出半徑,寫出圓的方程(2)由的長是,求出圓心到直線的距離,然后分直線斜率存在與不存在求解.【詳解】(1)設(shè)圓C的標(biāo)準(zhǔn)方程為依題意可得:解得,半徑.∴圓C的標(biāo)準(zhǔn)方程為;(2),∴圓心到直線m的距離①直線斜率不存在時(shí),直線m方程為:;②直線m斜率存在時(shí),設(shè)直線m為.,解得∴直線m的方程為∴直線m的方程為或.【點(diǎn)睛】本題主要考查了圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系,點(diǎn)到直線的距離,屬于中檔題.18、(1).(2)【解析】
(1)根據(jù)基函數(shù)的定義列方程,比較系數(shù)后求得的值.(2)設(shè)出的表達(dá)式,利用為偶函數(shù),結(jié)合偶函數(shù)的定義列方程,化簡求得,由此化簡的表達(dá)式,構(gòu)造函數(shù),利用定義法證得在上的單調(diào)性,由此求得的最小值,也即的最小值,從而求得的最小值,結(jié)合題目所給條件,求出的值,即求得的解析式.【詳解】解:(1)由已知得,即,得,所以.(2)設(shè),則.由,得,整理得,即,即對任意恒成立,所以.所以.設(shè),,令,則,任取,且則,因?yàn)?,且所以,,,故即,所以在單調(diào)遞增,所以,且當(dāng)時(shí)取到“”.所以,又在區(qū)間的最小值為,所以,且,此時(shí),所以【點(diǎn)睛】本小題主要考查新定義函數(shù)的理解和運(yùn)用,考查函數(shù)的單調(diào)性、奇偶性的運(yùn)用,考查利用定義法證明函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查函數(shù)與方程的思想,綜合性較強(qiáng),屬于中檔題.19、(1)0.035(2)平均數(shù)為:41.5歲中位數(shù)為:42.1歲【解析】
(1)根據(jù)頻率之和為1,結(jié)合題中條件,直接列出式子計(jì)算,即可得出結(jié)果;(2)根據(jù)每組的中間值乘該組的頻率再求和,即可得出平均數(shù);根據(jù)中位數(shù)兩邊的頻率之和相等,即可求出中位數(shù).【詳解】(1)由題意可得:,解得;(2)由題中數(shù)據(jù)可得:歲,設(shè)中位數(shù)為,則,∴歲.【點(diǎn)睛】本題主要考查完善頻率分布直方圖,以及由頻率分布直方圖求平均數(shù),中位數(shù)等,熟記頻率的性質(zhì),以及平均數(shù)與中位數(shù)的計(jì)算方法即可,屬于??碱}型.20、(1)(2)當(dāng)銷售單價(jià)定為10元時(shí),銷量為50件(3)要使利潤達(dá)到最大,應(yīng)將價(jià)格定位8.75元.【解析】
(1)由均值公式求得均值,,再根據(jù)給定公式計(jì)算回歸系數(shù),得回歸方程;(2)在(1)的回歸方程中令,求得值即可;(3)由利潤可化為的二次函數(shù),由二次函數(shù)知識可得利潤最大值及此時(shí)的值.【詳解】(1)由題意可得,,則,從而,故所求回歸直線方程為.(2)當(dāng)時(shí),,故當(dāng)銷售單價(jià)定為10元時(shí),銷量為50件.(3)由題意可得,,.故要使利潤達(dá)到最大,應(yīng)將價(jià)格定位8.75元.【點(diǎn)睛】本題考查線性回歸直線方程,解題時(shí)只要根據(jù)已知公式計(jì)算,計(jì)算能力是正確解答本題的基礎(chǔ).21、(1)k≤1;(2)(0,1).【解析】試題分析:(1)把f(x)=代入,化簡得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在單調(diào)遞增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年心理健康咨詢師基礎(chǔ)筆試題目
- 2026年跨境電商物流的無人配送體系實(shí)踐題庫
- 2026年跨文化營銷活動中文化差異問題解析與解決策略題
- 2026年工程造價(jià)中級實(shí)戰(zhàn)練習(xí)題目
- 城中村空間合理利用方案
- 綠化工程設(shè)計(jì)與施工協(xié)調(diào)方案
- 綠化工程設(shè)計(jì)優(yōu)化與實(shí)施方案
- 道路施工安全隱患整改方案
- 城中村夜間經(jīng)濟(jì)發(fā)展方案
- 裝修現(xiàn)場管理與協(xié)調(diào)方案
- 高校區(qū)域技術(shù)轉(zhuǎn)移轉(zhuǎn)化中心(福建)光電顯示、海洋氫能分中心主任招聘2人備考題庫及答案詳解(考點(diǎn)梳理)
- 航空安保審計(jì)培訓(xùn)課件
- 2026元旦主題班會:馬年猜猜樂馬年成語教學(xué)課件
- T-CI 263-2024 水上裝配式鋼結(jié)構(gòu)棧橋(平臺)施工技術(shù)規(guī)程
- 云南省楚雄州2023-2024學(xué)年上學(xué)期期末教育學(xué)業(yè)質(zhì)量監(jiān)測九年級歷史試卷(含答案)
- 2023年湖北煙草筆試試題
- 凝血功能檢測方法與臨床意義
- 人教版五年級數(shù)學(xué)用方程解決問題
- 架桿租賃合同
- 哈工大歷年電機(jī)學(xué)試卷及答案詳解
- GB/T 16886.1-2022醫(yī)療器械生物學(xué)評價(jià)第1部分:風(fēng)險(xiǎn)管理過程中的評價(jià)與試驗(yàn)
評論
0/150
提交評論