江蘇省啟東市重點中學2024屆中考數(shù)學最后一模試卷含解析_第1頁
江蘇省啟東市重點中學2024屆中考數(shù)學最后一模試卷含解析_第2頁
江蘇省啟東市重點中學2024屆中考數(shù)學最后一模試卷含解析_第3頁
江蘇省啟東市重點中學2024屆中考數(shù)學最后一模試卷含解析_第4頁
江蘇省啟東市重點中學2024屆中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省啟東市重點中學2024屆中考數(shù)學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷2.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+3.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內(nèi)角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形4.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定5.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°6.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.7.如圖,EF過?ABCD對角線的交點O,交AD于E,交BC于F,若?ABCD的周長為18,,則四邊形EFCD的周長為A.14 B.13 C.12 D.108.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定9.如圖,一圓弧過方格的格點A、B、C,在方格中建立平面直角坐標系,使點A的坐標為(﹣3,2),則該圓弧所在圓心坐標是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)10.把直線l:y=kx+b繞著原點旋轉180°,再向左平移1個單位長度后,經(jīng)過點A(-2,0)和點B(0,4),則直線l的表達式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線a∥b,∠l=60°,∠2=40°,則∠3=_____.12.﹣|﹣1|=______.13.因式分解:2x14.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達式是_____.15.如圖,小明想用圖中所示的扇形紙片圍成一個圓錐,已知扇形的半徑為5cm,弧長是cm,那么圍成的圓錐的高度是cm.16.如圖,已知O為△ABC內(nèi)一點,點D、E分別在邊AB和AC上,且,DE∥BC,設、,那么______(用、表示).三、解答題(共8題,共72分)17.(8分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).18.(8分)先化簡,再求值:(1﹣)÷,其中x=1.19.(8分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)20.(8分)計算:2sin30°﹣|1﹣|+()﹣121.(8分)在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(shù)(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據(jù)圖表中的信息完成下列問題:(1)本次抽樣調查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數(shù);(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、?。┲?,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.22.(10分)如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點M(B,M,D三點在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°和60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)23.(12分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.24.某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數(shù)根.故選B.考點:根的判別式.2、C【解析】

過點C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關鍵是熟練的掌握勾股定理的運算.3、C【解析】

根據(jù)平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內(nèi)角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵4、C【解析】

設的兩根為x1,x2,由二次函數(shù)的圖象可知,;設方程的兩根為m,n,再根據(jù)根與系數(shù)的關系即可得出結論.【詳解】解:設的兩根為x1,x2,∵由二次函數(shù)的圖象可知,,.設方程的兩根為m,n,則.故選C.【點睛】本題考查的是拋物線與x軸的交點,熟知拋物線與x軸的交點與一元二次方程根的關系是解答此題的關鍵.5、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質及三角形內(nèi)角和定理,解題的關鍵是先根據(jù)平行線的性質求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.6、D【解析】

連接OC、OD、BD,根據(jù)點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規(guī)則圖形的面積轉化為求規(guī)則圖形的面積.7、C【解析】

∵平行四邊形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四邊形ABCD=18,∴CD+AD=9,∴C四邊形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故選C.【點睛】本題關鍵在于利用三角形全等,解題關鍵是將四邊形CDEF的周長進行轉化.8、A【解析】

根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩(wěn)定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.9、C【解析】如圖:分別作AC與AB的垂直平分線,相交于點O,則點O即是該圓弧所在圓的圓心.∵點A的坐標為(﹣3,2),∴點O的坐標為(﹣2,﹣1).故選C.10、B【解析】

先利用待定系數(shù)法求出直線AB的解析式,再求出將直線AB向右平移1個單位長度后得到的解析式,然后將所得解析式繞著原點旋轉180°即可得到直線l.【詳解】解:設直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個單位長度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點旋轉180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達式是y=2x?2.故選:B.【點睛】本題考查了一次函數(shù)圖象平移問題,掌握解析式“左加右減”的規(guī)律以及關于原點對稱的規(guī)律是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、80°【解析】

根據(jù)平行線的性質求出∠4,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案為:80°.【點睛】本題考查的是平行線的性質、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關鍵.12、2【解析】

原式利用立方根定義,以及絕對值的代數(shù)意義計算即可求出值.【詳解】解:原式=3﹣1=2,故答案為:2【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.13、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點:因式分解.14、y=2(x+3)2+1【解析】

由于拋物線平移前后二次項系數(shù)不變,然后根據(jù)頂點式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.15、4【解析】

已知弧長即已知圍成的圓錐的底面半徑的長是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長是5cm.就可以根據(jù)勾股定理求出圓錐的高.【詳解】設底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.16、【解析】

根據(jù),DE∥BC,結合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.三、解答題(共8題,共72分)17、39米【解析】

過點A作AE⊥CD,垂足為點E,在Rt△ADE中,利用三角函數(shù)求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點A作AE⊥CD,垂足為點E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.18、.【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把x的值代入計算即可求出值.【詳解】原式==當x=1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握運算法則是解答本題的關鍵.19、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=10,設AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點睛:本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.20、4﹣【解析】

原式利用絕對值的代數(shù)意義,特殊角的三角函數(shù)值,負整數(shù)指數(shù)冪的法則計算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【點睛】本題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.21、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D組的頻數(shù)除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數(shù)即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數(shù);(4)畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好抽到甲和乙的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應扇形的圓心角α的度數(shù)=×360°=36°;(3)700×=140,所以估計體育測試成績在A、B兩個等級的人數(shù)共有140人;(4)畫樹狀圖如下:共12種等可能的結果數(shù),其中恰好抽到甲和乙的結果數(shù)為2,所以恰好抽到甲和乙的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖.22、通信塔CD的高度約為15.9cm.【解析】

過點A作AE⊥CD于E,設CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出關于x的方程,求出方程的解即可.【詳解】過點A作AE⊥CD于E,則四邊形ABDE是矩形,設CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度約為15.9cm.【點睛】本題考查了解直角三角形,能通過解直角三角形求出AE、BM的長度是解此題的關鍵.23、(1)見解析;(2)AB=4【解析】

(1)過點B作BF⊥CE于F,根據(jù)同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據(jù)全等三角形對應邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據(jù)矩形的對邊相等可得AE=BF,從而得證;(2)由(1)可知:CF=DE,四邊形AEFB是矩形,從而求得AB=EF,利用銳角三角函數(shù)的定義得出DE和CE的長,即可求得AB的長.【詳解】(1)證明:過點B作BH⊥CE于H,如圖1.∵CE⊥AD,∴∠BHC=∠CED=90°,∠1+∠D=90°.∵∠BCD=90°,∴∠1+∠2=90°,∴∠2=∠D.又BC=CD∴△BHC≌△CED(AAS).∴BH=CE.∵BH⊥CE,CE⊥AD,∠A=90

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論